Skip to main content
Log in

Mixed variational continuum mechanics modeling: a multidomain subpotential approach

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A multidomain macro-hybrid mixed variational subpotential approach of models in continuum mechanics is developed. Variational principles of mass conservation, balance momentum and energy, as well as material constitutive relations, are formulated as subpotential subdifferential evolution systems. Under the basis of variational divergence formulae and subdifferential generalized boundary conditions, variational mixed initial/boundary-value inclusion problems are established in reflexive Banach trajectory real functional frameworks. Multidomain motion velocity, mass conservation density, material constitutive stress, deformation porosity as well as balance internal energy evolution coupled variational mechanical systems are achieved. As a distinctive modeling feature, multidomain synchronizing transmission constraints are implemented in terms of dual Lagrangian internal boundary subpotential subdifferential inclusions. Lastly, evolution internal variational approximations, in general, for nonconforming macro-hybrid mixed finite element spatial discretizations as well as semi-implicit time marching fully discrete schemes are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gurtin, M.: An Introduction to Contimuum Mechanics. Academic Press, San Diego (2003)

    Google Scholar 

  2. Gurtin, M., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continuum. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  3. Alduncin, G.: Composition duality methods for mixed variational inclusions. Appl. Math. Optim. 52, 311–348 (2005)

    Article  MathSciNet  Google Scholar 

  4. Alduncin, G.: Composition duality methods for evolution mixed variational inclusions. Nonlinear Anal. Hybrid Syst. 1, 336–363 (2007)

    Article  MathSciNet  Google Scholar 

  5. Alduncin, G.: Variational formulations of nonlinear constrained boundary value problems. Nonlinear Anal. 72, 2639–2644 (2010)

    Article  MathSciNet  Google Scholar 

  6. Temam, R.: Analyse Numérique. Presses Universitaires de France, Paris (1970)

    MATH  Google Scholar 

  7. Ciarlet, G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  8. Fortin, M., Glowinski, R. (eds.): Méthodes de Lagrangien Augmenté: Applications à la Résolution Numérique de Problèmes aux Limites. Dunod-Bordas, Paris (1982)

    MATH  Google Scholar 

  9. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)

    Book  Google Scholar 

  10. Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod/Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  11. Alduncin, G.: Subdifferential and variational formulations of boundary value problems. Comput. Methods Appl. Mech. Eng. 72, 173–186 (1989)

    Article  MathSciNet  Google Scholar 

  12. Gurtin, M.: Configurational Forces as Basic Concepts of Continuum Physics. Springer, New York (2000)

    MATH  Google Scholar 

  13. Akagi, G., Ôtani, M.: Evolution inclusions governed by subdifferentials in reflexive Banach spaces. J. Evol. Equ. 4, 519–541 (2004)

    Article  MathSciNet  Google Scholar 

  14. Alduncin, G.: Proximal penalty-duality algorithms for mixed optimality conditions. J. Fixed Point Theory Appl. 19, 1775–1791 (2017)

    Article  MathSciNet  Google Scholar 

  15. Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, New York (2010)

    Book  Google Scholar 

  16. Brézis, H.: Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. Math. Studies, vol. 5. North-Holland, Amsterdam/New York (1973)

    MATH  Google Scholar 

  17. Halphen, B., NGuyen, Qs.: Sur les matériaux standard généralisés. Journal Mécanique 14, 39–63 (1975)

    MathSciNet  MATH  Google Scholar 

  18. Bodovillé, G.: The implicit standard material theory for modelling the nonassociative behaviour of metals. Arch. Appl. Mech. 71, 426–435 (2001)

    Article  Google Scholar 

  19. Le Tallec, P.: Numerical Analysis of Viscoelastic Problems. Masson, Paris (1990)

    MATH  Google Scholar 

  20. Temam, R.: A generalized Norton–Hoff model and the Prandt–Reuss law of plasticity. Arch. Ration. Mech. Anal. 95, 137–183 (1986)

    Article  Google Scholar 

  21. Perzyna, P.: Fundamental problems in viscoplasticity. Rec. Adv. Appl. Mech. 9, 243–377 (1966)

    Article  Google Scholar 

  22. Prager, W., Hodge, P.: The Theory of Perfectly Plastic Solids. Wiley, New York (1951)

    MATH  Google Scholar 

  23. Coulibaly, M., Sabar, H.: Micromechanical modeling of linear viscoelastic behavior of heterogeneous materials. Arch. Appl. Mech. 81, 345–359 (2011)

    Article  Google Scholar 

  24. Dinzart, F., Sabar, H.: Homogenization of the viscoelastic heterogeneous materials with multi-coated reinforcements: an internal variables formulation. Arch. Appl. Mech. 84, 715–730 (2014)

    Article  Google Scholar 

  25. Ekeland, I., Temam, R.: Analyse Convexe et Problèmes Variationnels. Dunod/Gauthier-Villars, Paris (1974)

    MATH  Google Scholar 

  26. Adams, A., Fournier, J.F.: Sobolev Spaces. Academic Press, Amsterdam (2008)

    MATH  Google Scholar 

  27. Yosida, K.: Functional Analysis. Springer, New York (1974)

    Book  Google Scholar 

  28. Alduncin, G.: Macro-hybrid variational formulations of constrained boundary value problems. Numer. Funct. Anal. Optim. 28, 751–774 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Alduncin.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alduncin, G. Mixed variational continuum mechanics modeling: a multidomain subpotential approach. Arch Appl Mech 92, 3381–3404 (2022). https://doi.org/10.1007/s00419-022-02242-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02242-x

Keywords

Mathematics Subject Classification

Navigation