Skip to main content

Advertisement

Log in

A statistically based strain energy function for polymer chains in rubber elasticity

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A statistically based strain energy is proposed for rubber-like materials at large stretches. It is based on the micro-mechanically vectorial modeling of a single polymer chain, and its entropy is used in order to account for the entropic elasticity of rubbery macromolecules. We propose a framework for derivation of a microscopic free energy function based on a multidimensional form of a generic normal (Gauss) probability distribution function (pdf). Homogenization of the microscopic free energy by means of statistical tools renders a macroscopic free energy. The random variables of the general formulation are specified as bond angle differences, representing bending and torsion, respectively, for each bead of the single chain. A further step is a formulation of both quantities in terms of the applied stretch, which eventually renders the macroscopic strain energy as a hyperelastic energy function. Additionally, we propose a methodology to satisfy a normalization condition for the related integral of the pdf over the constraint statistic domain. A numerical example illustrates the capability of the proposed energy function to simulate the S-shape behavior of the well-known experimental data for vulcanized rubbers by Treloar (Trans Faraday Soc 40:59–70, 1944).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Arruda, E., Boyce, M.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)

    Article  Google Scholar 

  2. Beda, T.: An approach for hyperelastic model-building and parameters estimation a review of constitutive models. Eur. Polymer J. 50, 97–108 (2014)

    Article  Google Scholar 

  3. Bien-aimé, L.K.M., Blaise, B.B., Beda, T.: Characterization of hyperelastic deformation behavior of rubber-like materials. SN Appl. Sci. 2(4), 1–10 (2020)

    Article  Google Scholar 

  4. Carroll, M.: A strain energy function for vulcanized rubbers. J. Elast. 103, 173–187 (2011)

    Article  MathSciNet  Google Scholar 

  5. Dammann, C., Caylak, I., Mahnken, R.: Sequential biaxial stretching of polycarbonate-films for characterization of strain-induced anisotropy. GAMM-Mitteilungen 41(1) (2018)

  6. Dargazany, R., Lin, J., Khalili, L., Itskov, M., Chen, H., Alexander-Katz, A.: Micromechanical model for isolated polymer-colloid clusters under tension. Phys. Rev. E 94, 042501 (2016)

    Article  Google Scholar 

  7. Davidson, J.D., Goulbourne, N.C.: A nonaffine network model for elastomers undergoing finite deformations. J. Mech. Phys. Solids 61(8), 1784–1797 (2013)

    Article  Google Scholar 

  8. Erman, B., Flory, P.J.: Theory of elasticity of polymer networks. ii. The effect of geometric constraints on junctions. J. Chem. Phys. 68(12), 5363–5369 (1978)

    Article  Google Scholar 

  9. Gedde, U.W., Hedenqvist, M.S.: Fundamental Polymer Science. Springer, New York (2019)

    Book  Google Scholar 

  10. Gent, A.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996)

    Article  Google Scholar 

  11. Gent, A., Thomas, A.: Forms for the stored (strain) energy function for vulcanized rubber. J. Polym. Sci. 28, 625–628 (1958)

    Article  Google Scholar 

  12. Heinrich, G., Kaliske, M.: Theoretical and numerical formulation of a molecular based constitutive tube-model of rubber elasticity. Comput. Theor. Polym. Sci. 7(3–4), 227–241 (1997)

    Article  Google Scholar 

  13. Heinrich, G., Straube, E.: On the strength and deformation dependence of the tube-like topological constraints of polymer networks, melts and concentrated solutions. ii. polymer melts and concentrated solutions. Acta Polym. 35(2), 115–119 (1984)

    Article  Google Scholar 

  14. Holt, W.: Behavior of rubber under repeated stresses. Rubber Chem. Technol. 5(1), 79–89 (1932)

    Article  Google Scholar 

  15. Holzapfel, G.: Nonlinear Solid Mechanics. Wiley, Chichester (2001)

    Google Scholar 

  16. Hossain, M., Steinmann, P.: More hyperelastic models for rubber-like materials: consistent tangent operators and comparative study. J. Mech. Behav. Mater. 22(1–2), 27–50 (2013)

    Article  Google Scholar 

  17. James, H.M., Guth, E.: Theory of the elastic properties of rubber. J. Chem. Phys. 11(10), 455–481 (1943)

    Article  Google Scholar 

  18. Khajehsaeid, H., Arghavani, J., Naghdabadi, R.: A hyperelastic constitutive model for rubber-like materials. Eur. J. Mech. A/Solids 38, 144–151 (2013)

    Article  MathSciNet  Google Scholar 

  19. Kuhn, W.: Über die gestalt fadenförmiger moleküle in lösungen. Kolloid Z. 68, 2–15 (1934)

    Article  Google Scholar 

  20. Lemons, D.: An Introduction to Stochastic Processes in Physics. The John Hopkins University Press (2002)

  21. Mahnken, R.: Identification of Material Parameters for Constitutive Equations. In: Stein, E., de Borst, R., Hughes, Thomas J.R. (Eds), vol. 4, 2 edn. Wiley (2017)

  22. Mahnken, R.: Strain mode dependent weighting functions in hyperelasticity accounting for verification, validation and stability of material parameters. Arch. Appl. Mech. 92(3), 713–754 (2022)

    Article  MathSciNet  Google Scholar 

  23. Mahnken, R., Stein, E.: Parameter identification for finite deformation elasto-plasticity in principal directions. Comput. Meths. Appl. Mech. Eng. 147, 17–39 (1997)

    Article  Google Scholar 

  24. Miehe, C., Göktepe, S., Lulei, F.: A micro-macro approach to rubber-like materials-part i: the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52(11), 2617–2660 (2004)

    Article  MathSciNet  Google Scholar 

  25. Miehe, C., Göktepe, S., Lulei, F.: A micro-approach to rubber-like materials - part i: The non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617–2660 (2004)

    Article  MathSciNet  Google Scholar 

  26. Mooney, M.: Theory of large elastic deformation. J. Appl. Phys. 11, 582–596 (1940)

    Article  Google Scholar 

  27. Ogden, R.: Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 326, 565–584 (1972)

    MATH  Google Scholar 

  28. Papoulis, A., Pillai, S.U.: Probability, Random Variables and Stochastic Processes, 4th Edition. McGraw-Hill Higher (2002)

  29. Pucci, E., Saccomandi, G.: A note on the Gent model for rubber-like materials. Rubber Chem. Technol. 75(5), 839–852 (2002)

    Article  Google Scholar 

  30. Rivlin, R.: Large elastic deformations of isotropic materials. IV. further developments of the general theory. Philos. Trans. R. Soc. A 241, 379–397 (1948)

  31. Rivlin, R.: Large elastic deformations of isotropic materials. V. the problem of flexure. Proc. R. Soc. Lond. AMath. Phys. Sci. 1959, 463–473 (1949)

  32. Rivlin, R.: Large elastic deformations of isotropic materials. vi. further results in the theory of torsion, shear and flexure. Philos. Trans. R. Soc. A 242, 173–195 (1949)

  33. Rivlin, R., Saunders, D.: Large elastic deformations of isotropic materials. vii. experiments on the deformation of rubber. Philos. Trans. R. Soc. A 243, 251–288 (1951)

  34. Rubinstein, M.: Polymer Physics. Oxford University Press, Oxford (2003)

    Google Scholar 

  35. Simo, J., Taylor, R.: Quasi-incompressible finite elasticity in principal stretches, continuum basis and numerical algorithms. Comput. Methods Appl. Mech. Eng. 85, 273–310 (1991)

    Article  MathSciNet  Google Scholar 

  36. Spencer, A.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics, vol. 1. Academic press, New York (1971)

  37. Steinmann, P., Hossain, M., Possart, G.: Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data. Arch. Appl. Mech. 82, 1183–1217 (2012)

    Article  Google Scholar 

  38. Treloar, L.: Stress-strain data for vulcanised rubber under various types of deformation. Trans. Faraday Soc. 40, 59–70 (1944)

    Article  Google Scholar 

  39. Treloar, L.R.G.: The Physics of Rubber Elasticity. Oxford University Press, Oxford (1975)

    Google Scholar 

  40. Widany, K.U., Mahnken, R.: Adaptivity for parameter identification of incompressible hyperelastic materials using stabilized tetrahedral elements. Comput. Methods Appl. Mech. Engrg. 245–246, 117–131 (2012)

    Article  MathSciNet  Google Scholar 

  41. Yeoh, O.: Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66, 754–771 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is based on investigations which are financially supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) under grant number MA 1979/27-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamil Mirzapour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahnken, R., Mirzapour, J. A statistically based strain energy function for polymer chains in rubber elasticity. Arch Appl Mech 92, 3295–3323 (2022). https://doi.org/10.1007/s00419-022-02237-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02237-8

Keywords

Navigation