Skip to main content
Log in

Thermo-mechanical analysis of functionally graded material beams using micropolar theory and higher-order unified formulation

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this work, thermo-mechanical analysis of functionally graded material beams using micropolar theory is studied. The analysis is based on a higher-order model in the framework of the Carrera unified formulation (CUF). Regarding use of CUF methodology, the three-dimensional (3D) displacement and micro-rotation fields are expressed as the approximation of the arbitrary order of the displacement and micro-rotation unknowns over the cross-section. Taylor expansion and Lagrange expansion in terms of the cross-section coordinates are considered in the model for approximating the displacement and micro-rotation fields. It is assumed that the mechanical and thermal properties of the beams are nonhomogeneous over the thickness; therefore, the nonlinear temperature rise profile is taken into account in the analysis. So, the effect of the steady-state heat conduction has been taken into account in the formulation. Here, uncoupled thermo-elastic problems are considered. The governing equations are written in terms of the so-called fundamental nuclei, which are independent of the order of expansion. Several numerical examples of free vibration analysis are presented and the effect of several parameters such as thermal loadings, power law indexes, orders of expansion and boundary conditions on the results are demonstrated. The equations can be used to analyze the beam structures in macro‐, micro‐, and nano‐scale through taking the micropolar couple stress and micro‐rotation effects into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zozulya, V.V.: Micropolar curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models. Curved and Layer. Struct. 4, 104–118 (2017). https://doi.org/10.1515/cls-2017-0008

    Article  Google Scholar 

  2. Ieşan, D.: On the linear theory of micropolar elasticity. Int. J. Eng. Sci. 7, 1213–1220 (1969). https://doi.org/10.1016/0020-7225(69)90030-5

    Article  MathSciNet  MATH  Google Scholar 

  3. Nowacki, W.: Theory of Micropolar Elasticity. Springer (1970)

  4. Nowacki, W.: Theory of axymmetric elasticity. Pergamon Press, New York (1986)

    Google Scholar 

  5. Eringen, A.C.: Simple microfluids. Int. J. Eng. Sci. 2, 205–217 (1964). https://doi.org/10.1016/0020-7225(64)90005-9

    Article  MathSciNet  MATH  Google Scholar 

  6. Koiter, W.T.: Couple stresses in the theory of elasticity, I and II. Proc. Koninklijke Ned. Akad. Wet. (B) 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  7. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002). https://doi.org/10.1016/S0020-7683(02)00152-X

    Article  MATH  Google Scholar 

  8. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 6, 51–78 (1964). https://doi.org/10.1007/BF00248490

    Article  MathSciNet  MATH  Google Scholar 

  9. Mindlin, R.D.: Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965). https://doi.org/10.1016/0020-7683(65)90006-5

    Article  Google Scholar 

  10. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983). https://doi.org/10.1063/1.332803

    Article  Google Scholar 

  11. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  12. Voigt, W.: Theoretische studien über die elasticitätsverhältnisse der krystalle. Abhandlungen der Mathematischen Classe der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Gӧttingen. 34, 3–51 (1887)

    Google Scholar 

  13. Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)

    MathSciNet  MATH  Google Scholar 

  14. Eringen, A.C.: Microcontinuum Field Theories: I. Foundations and Solids. Springer, New York, USA (1999)

  15. Eringen, A.C.: Microcontinuum Field Theories: II. Fluent Media. Springer, New York, USA (2001)

  16. Günther, W.: Zur statik und kinematik des cosseratschen kontinuums. Abh. Braunschw. Wiss. Ges. 10, 195–213 (1958)

    MATH  Google Scholar 

  17. Altenbach, J.H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80, 73–92 (2010). https://doi.org/10.1007/s00419-009-0365-3

    Article  MATH  Google Scholar 

  18. Hassanpour, S., Heppler, G.R.: Comprehensive and easy-to-use torsion and bending theories for micropolar beams. Int. J. Mech. Sci. 114, 71–87 (2016). https://doi.org/10.1016/j.ijmecsci.2016.05.007

    Article  Google Scholar 

  19. Hassanpour, S., Heppler, G.R.: Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations. Math. Mech. Solids. 22(2), 224–242 (2017). https://doi.org/10.1177/1081286515581183

    Article  MathSciNet  MATH  Google Scholar 

  20. Zozulya, V.V.: Higher order theory of micropolar plates and shells. J. Appl. Math. Mech. (ZAMM) 98(6), 886–918 (2018). https://doi.org/10.1002/zamm.201700317

    Article  MathSciNet  Google Scholar 

  21. Tung, D.X.: The reflection and transmission of a quasi-longitudinal displacement wave at an imperfect interface between two nonlocal orthotropic micropolar half-spaces. Arch. Appl. Mech. 91, 4313–4328 (2021). https://doi.org/10.1007/s00419-021-02011-2

    Article  Google Scholar 

  22. Carrera, E., Zozulya, V.V.: Carrera unified formulation (CUF) for the micropolar beams: analytical solutions. Mech. Adv. Mater. Struct. 28, 583–607 (2021). https://doi.org/10.1080/15376494.2019.1578013

    Article  Google Scholar 

  23. Carrera, E. and Zozulya, V. V.: Carrera unified formulation (CUF) for the micropolar plates and shells. I. Higher order theory, Mech. Adv. Mater. Struct. (2020). https://doi.org/10.1080/15376494.2020.1793241

  24. Carrera, E. and Zozulya, V. V.: Carrera unified formulation (CUF) for the micropolar plates and shells. II. Complete linear expansion case. Mech. Adv. Mater. Struct. 1–20, 2020. https://doi.org/10.1080/15376494.2020.1793242

  25. Carrera, E., Zozulya, V.V.: Closed-form solution for the micropolar plates: carrera unified formulation (CUF) approach. Arch. Appl. Mech. 91, 91–116 (2021). https://doi.org/10.1007/s00419-020-01756-6

    Article  Google Scholar 

  26. Daraei, B., Shojaee, S., Hamzehei-Javaran, S.: Analysis of stationary and axially moving beams considering functionally graded material using micropolar theory and Carrera unified formulation. Compos. Struct. 271, 114054 (2021). https://doi.org/10.1016/j.compstruct.2021.114054

    Article  Google Scholar 

  27. Augello, R., Carrera, E., Pagani, A.: Unified theory of structures based on micropolar elasticity. Meccanica 54, 1785–1800 (2019). https://doi.org/10.1007/s11012-019-01041-z

    Article  MathSciNet  Google Scholar 

  28. Carrera, E., Cinefra, M., Petrolo, M. and Zappino, E.: Finite Element Analysis of Structures through Unified Formulation. John Wiley & Sons Ltd, Chichester, United Kingdom (2014)

  29. Carrera, E.: A class of two dimensional theories for multilayered plates analysis. Atti Accademia delle Scienze di Torino. Mem. Sci. Fis. 19, 49–87 (1995)

    Google Scholar 

  30. Carrera, E.: Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch. Comput. Meth. Engng. 9(2), 87–140 (2002). https://doi.org/10.1007/BF02736649

    Article  MathSciNet  MATH  Google Scholar 

  31. Carrera, E.: Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking. Arch. Comput. Meth. Engng. 10(3), 215–296 (2003). https://doi.org/10.1007/BF02736224

    Article  MathSciNet  MATH  Google Scholar 

  32. Carrera, E., Brischetto, S., Robaldo, A.: Variable kinematic model for the analysis of functionally graded material plates. AIAA J. 46(1), 194–203 (2008). https://doi.org/10.2514/1.32490

    Article  Google Scholar 

  33. Carrera, E., Giunta, G., Nali, P., Petrolo, M.: Refined beam elements with arbitrary cross-section geometries. Comput. Struct. 88, 283–293 (2010). https://doi.org/10.1016/j.compstruc.2009.11.002

    Article  Google Scholar 

  34. Carrera, E., Giunta, G.: Refined beam theories based on a unified formulation. Int. J. Appl. Mech. 02(01), 117–143 (2010). https://doi.org/10.1142/S1758825110000500

    Article  Google Scholar 

  35. Nail, P., Carrera, E., Lecca, S.: Assessments of refined theories for buckling analysis of laminated plates. Compos. Struct. 93, 456–464 (2011). https://doi.org/10.1016/j.compstruct.2010.08.035

    Article  Google Scholar 

  36. Daraei, B., Shojaee, S., Hamzehei-Javaran, S.: A new finite strip formulation based on Carrera unified formulation for the free vibration analysis of composite laminates. Mech. Adv. Mater. Struct (2021). https://doi.org/10.1080/15376494.2021.1936706

    Article  Google Scholar 

  37. Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C.: Radial basis functions collocation for the bending and free vibration analysis of laminated plates using the Reissner-Mixed Variational Theorem. Eur. J. Mech. A-Solid. 39, 104–112 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Alesadi, A., Galehdari, M., Shojaee, S.: Free vibration and buckling analysis of cross-ply laminated composite plates using Carrera’s unified formulation based on Isogeometric approach. Comput. Struct. 183, 38–47 (2017). https://doi.org/10.1016/j.compstruc.2017.01.013

    Article  Google Scholar 

  39. Alesadi, A., Shojaee, S., Hamzehei-Javaran, S.: Spherical Hankel-based free vibration analysis of cross- ply laminated plates using refined finite element theories. Iran. J. Sci. Technol. Trans. Civ. Eng. 44(01), 127–137 (2020). https://doi.org/10.1007/s40996-019-00242-6

    Article  Google Scholar 

  40. Mantari, J., Ramos, I., Carrera, E., Petrolo, M.: Static analysis of functionally graded plates using new non-polynomial displacement fields via carrera unified formulation. Compos. Part B: Eng. 89, 127–142 (2016). https://doi.org/10.1016/j.compositesb.2015.11.025

    Article  Google Scholar 

  41. Catapano, A., Giunta, G., Belouettar, S., Carrera, E.: Static analysis of laminated beams via a unified formulation. Compos. Struct. 94(01), 75–83 (2011). https://doi.org/10.1016/j.compstruct.2011.07.015

    Article  Google Scholar 

  42. Pagani, A., Carrera, E., Boscolo, M., Banerjee, J.R.: Refined dynamic stiffness elements applied to free vibration analysis of generally laminated composite beams with arbitrary boundary conditions. Compos. Struct. 110, 305–316 (2014). https://doi.org/10.1016/j.compstruct.2013.12.010

    Article  Google Scholar 

  43. Carrera, E., Pagani, A., Banerjee, J.R.: Linearized buckling analysis of isotropic and composite beam-columns by Carrera unified formulation and dynamic stiffness method. Mech. Adv. Mater. Struct. 23(9), 1092–1103 (2016). https://doi.org/10.1080/15376494.2015.1121524

    Article  Google Scholar 

  44. Carrera, E., Filippi, M., Mahato, P.K., Pagani, A.: Free-vibration tailoring of single- and multi-bay laminated box structures by refined beam theories. Thin-Walled Struct. 109, 40–49 (2016). https://doi.org/10.1016/j.tws.2016.09.014

    Article  Google Scholar 

  45. Daraei, B., Shojaee, S., Hamzehei-Javaran, S.: Free vibration analysis of composite laminated beams with curvilinear fibers via refined theories. Mech. Adv. Mater. Struct. 29(6), 840–849 (2022). https://doi.org/10.1080/15376494.2020.1797959

    Article  Google Scholar 

  46. Daraei, B., Shojaee, S., Hamzehei-Javaran, S.: Free vibration analysis of axially moving laminated beams with axial tension based on 1D refined theories using Carrera unified formulation. Steel Compos. Struct. 37(01), 37–49 (2020)

    Google Scholar 

  47. Ghazanfari, S., Hamzehei-Javaran, S., Alesadi, A., Shojaee, S.: Free vibration analysis of cross-ply laminated beam structures using refined beam theories and B-spline basis functions. Mech. Adv. Mater. Struct. 28(05), 468–475 (2021). https://doi.org/10.1080/15376494.2019.1574939

    Article  Google Scholar 

  48. Pagani, A., Carrera, E., Ferreira, A.J.M.: Higher-order theories and radial basis functions applied to free vibration analysis of thin-walled beams. Mech. Adv. Mater. Struct. 23(9), 1080–1091 (2016). https://doi.org/10.1080/15376494.2015.1121555

    Article  Google Scholar 

  49. Alesadi, A., Ghazanfari, S., Shojaee, S.: B-spline finite element approach for the analysis of thinwalled beam structures based on 1D refined theories using carrera unified formulation. Thin-Walled Struct. 130, 313–320 (2018)

    Article  Google Scholar 

  50. Carrera, E., Pagani, A., Augello, R.: On the role of large cross-sectional deformations in the nonlinear analysis of composite thin-walled structures. Arch. Appl. Mech. 91, 1605–1621 (2021). https://doi.org/10.1007/s00419-020-01843-8

    Article  Google Scholar 

  51. Hui, Y., Giunta, G., Belouettar, S., Huang, Q., Hu, H., Carrera, E.: A free vibration analysis of threedimensional sandwich beams using hierarchical one-dimensional finite elements. Compos. Part B: Eng. 110, 7–19 (2017). https://doi.org/10.1016/j.compositesb.2016.10.065

    Article  Google Scholar 

  52. Bathe, K.J.: Finite Element Procedure. Prentice Hall (1996)

  53. Lakes, R.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22, 55–63 (1986). https://doi.org/10.1016/0020-7683(86)90103-4

    Article  Google Scholar 

  54. Carrera, E., Giunta, G., Petrolo, M.: Beam structures: classical and advanced theories. UK, Wiley (2011) https://doi.org/10.1002/9781119978565

  55. Ramezani, S., Naghdabadi, R., Sohrabpour, S.: Analysis of micropolar elastic beams. Eur. J. Mech. A/Solids 28(2), 202–208 (2009). https://doi.org/10.1016/j.euromechsol.2008.06.006

    Article  MATH  Google Scholar 

  56. Javaheri, R., Eslami, M.R.: Thermal buckling of functionally graded plates. AIAA J. 40(1), 162–169 (2002). https://doi.org/10.2514/2.1626

    Article  MATH  Google Scholar 

  57. Ghannadpour, S.A.M., Ovesy, H.R., Nassirnia, M.: Buckling analysis of functionally graded plates under thermal loadings using the finite strip method. Comput. Struct. 108–109, 93–99 (2012). https://doi.org/10.1016/j.compstruc.2012.02.011

    Article  Google Scholar 

  58. Javaheri, R., Eslami, M.R.: Thermal buckling of functionally graded plates based on higher order theory. J. Therm. Stress. 25, 603–625 (2002). https://doi.org/10.1080/01495730290074333

    Article  Google Scholar 

  59. Farrokh, M., Afzali, M., Carrera, E.: Mechanical and thermal buckling loads of rectangular FG plates by using higher-order unified formulation. Mech. Adv. Mater. Struct. 28(6), 608–617 (2021). https://doi.org/10.1080/15376494.2019.1578014

    Article  Google Scholar 

  60. Xiaoning, L., Gengkai, H.: A continuum micromechanical theory of overall plasticity for particulate composites including particle size effect. Int. J. Plast. 21(4), 777–799 (2005). https://doi.org/10.1016/j.ijplas.2004.04.014f

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Shojaee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The variation of the internal strain energy \(\delta {L}_{\rm {int}}\) is as follows:

$$\begin{aligned}\delta {L}_{\rm {int}}=&{\int }_{\Omega }{\int }_{l}\left\{\left({F}_{s}{N}_{j}{\delta \omega }_{xsj}+{N}_{j}{\delta u}_{ysj}\frac{\partial {F}_{s}}{\partial z}\right)\left({C}_{66}^{MT}\left(-{F}_{\tau }{N}_{i}{\omega }_{x\tau i}+{N}_{i}{u}_{z\tau i}\frac{\partial {F}_{\tau }}{\partial y}\right)\right.\right.\\ &\left.+{C}_{66}^{M}\left({F}_{\tau }{N}_{i}{\omega }_{x\tau i}+{N}_{i}{u}_{y\tau i}\frac{\partial {F}_{\tau }}{\partial z}\right)\right)+\left(-{F}_{s}{N}_{j}{\delta \omega }_{xsj}+{N}_{j}{\delta u}_{zsj}{F}_{s,y}\right)\\ &\left({C}_{66}^{M}\left(-{F}_{\tau }{N}_{i}{\omega }_{x\tau i}+{N}_{i}{u}_{z\tau i}\frac{\partial {F}_{\tau }}{\partial y}\right)+{C}_{66}^{MT}\left({F}_{\tau }{N}_{i}{\omega }_{x\tau i}+{N}_{i}{u}_{y\tau i}\frac{\partial {F}_{\tau }}{\partial z}\right)\right)\\ &+{N}_{j}{\delta \omega }_{ysj}\frac{\partial {F}_{s}}{\partial z}\left({A}_{66}^{MT}{N}_{i}{\omega }_{z\tau i}\frac{\partial {F}_{\tau }}{\partial y}+{A}_{66}^{M}{N}_{i}{\omega }_{y\tau i}\frac{\partial {F}_{\tau }}{\partial z}\right)\\ &+{N}_{j}{\delta \omega }_{zsj}\frac{\partial {F}_{s}}{\partial y}\left({A}_{66}^{M}{N}_{i}{\omega }_{z\tau i}\frac{\partial {F}_{\tau }}{\partial y}+{A}_{66}^{MT}{N}_{i}{\omega }_{y\tau i}\frac{\partial {F}_{\tau }}{\partial z}\right)\\ &+{N}_{j}{\delta u}_{ysj}\frac{\partial {F}_{s}}{\partial y}\left({C}_{22}{N}_{i}{u}_{y\tau i}\frac{\partial {F}_{\tau }}{\partial y}+{C}_{23}{N}_{i}{u}_{z\tau i}\frac{\partial {F}_{\tau }}{\partial z}+{C}_{12}{F}_{\tau }{u}_{x\tau i}\frac{\partial {N}_{i}}{\partial x}\right)\\ &+{N}_{j}{\delta u}_{zsj}\frac{\partial {F}_{s}}{\partial z}\left({C}_{23}{N}_{i}{u}_{y\tau i}\frac{\partial {F}_{\tau }}{\partial y}+{C}_{33}{N}_{i}{u}_{z\tau i}\frac{\partial {F}_{\tau }}{\partial z}+{C}_{13}{F}_{\tau }{u}_{x\tau i}\frac{\partial {N}_{i}}{\partial x}\right)\\ &+{N}_{j}{\delta \omega }_{ysj}\frac{\partial {F}_{s}}{\partial y}\left({A}_{22}{N}_{i}{\omega }_{y\tau i}\frac{\partial {F}_{\tau }}{\partial y}+{A}_{23}{N}_{i}{\omega }_{z\tau i}\frac{\partial {F}_{\tau }}{\partial z}+{A}_{12}{F}_{\tau }{\omega }_{x\tau i}\frac{\partial {N}_{i}}{\partial x}\right)\\ &+{N}_{j}{\delta \omega }_{zsj}\frac{\partial {F}_{s}}{\partial z}\left({A}_{23}{N}_{i}{\omega }_{y\tau i}\frac{\partial {F}_{\tau }}{\partial y}+{A}_{33}{N}_{i}{\omega }_{z\tau i}\frac{\partial {F}_{\tau }}{\partial y}+{A}_{13}{F}_{\tau }{\omega }_{x\tau i}\frac{\partial {N}_{i}}{\partial x}\right)\\ &+{N}_{j}{\delta \omega }_{xsj}\frac{\partial {F}_{s}}{\partial y}\left({A}_{44}^{M}{N}_{i}{\omega }_{x\tau i}\frac{\partial {F}_{\tau }}{\partial y}+{A}_{44}^{MT}{F}_{\tau }{\omega }_{y\tau i}\frac{\partial {N}_{i}}{\partial x}\right)\\ &+{N}_{j}{\delta \omega }_{xsj}\frac{\partial {F}_{s}}{\partial z}\left({A}_{55}^{M}{N}_{i}{\omega }_{x\tau i}\frac{\partial {F}_{\tau }}{\partial z}+{A}_{55}^{MT}{F}_{\tau }{\omega }_{z\tau i}\frac{\partial {N}_{i}}{\partial x}\right)+\left({F}_{s}{N}_{j}{\delta \omega }_{zsj}+{N}_{j}{\delta u}_{xsj}\frac{\partial {F}_{s}}{\partial y}\right)\\ &\left({C}_{44}^{M}\left({F}_{\tau }{N}_{i}{\omega }_{z\tau i}+{N}_{i}{u}_{x\tau i}\frac{\partial {F}_{\tau }}{\partial y}\right)+{C}_{44}^{MT}\left(-{F}_{\tau }{N}_{i}{\omega }_{z\tau i}+{F}_{\tau }{u}_{y\tau i}\frac{\partial {N}_{i}}{\partial x}\right)\right)\\ &+\left(-{F}_{s}{N}_{j}{\delta \omega }_{ysj}+{N}_{j}{\delta u}_{xsj}\frac{\partial {F}_{s}}{\partial z}\right)\\ &\left({C}_{55}^{M}\left(-{F}_{\tau }{N}_{i}{\omega }_{y\tau i}+{N}_{i}{u}_{x\tau i}\frac{\partial {F}_{\tau }}{\partial z}\right)+{C}_{55}^{MT}\left({F}_{\tau }{N}_{i}{\omega }_{y\tau i}+{F}_{\tau }{u}_{z\tau i}\frac{\partial {N}_{i}}{\partial x}\right)\right)\\ &+{F}_{s}{\delta u}_{xsj}\left({C}_{12}{N}_{i}{u}_{y\tau i}\frac{\partial {F}_{\tau }}{\partial y}+{C}_{13}{N}_{i}{u}_{z\tau i}\frac{\partial {F}_{\tau }}{\partial y}+{C}_{11}{F}_{\tau }{u}_{x\tau i}\frac{\partial {N}_{i}}{\partial x}\right)\frac{\partial {N}_{j}}{\partial x}\\ &+{F}_{s}{\delta \omega }_{xsj}\left({A}_{12}{N}_{i}{\omega }_{y\tau i}\frac{\partial {F}_{\tau }}{\partial y}+{A}_{13}{N}_{i}{\omega }_{z\tau i}\frac{\partial {F}_{\tau }}{\partial z}+{A}_{11}{F}_{\tau }{\omega }_{x\tau i}\frac{\partial {N}_{i}}{\partial x}\right)\frac{\partial {N}_{j}}{\partial x}\\ &+{F}_{s}{\delta \omega }_{ysj}\left({A}_{44}^{MT}{N}_{i}{\omega }_{x\tau i}\frac{\partial {F}_{\tau }}{\partial y}+{A}_{44}^{M}{F}_{\tau }{\omega }_{y\tau i}\frac{\partial {N}_{i}}{\partial x}\right)\frac{\partial {N}_{j}}{\partial x}\\ &+{F}_{s}{\delta \omega }_{zsj}\left({A}_{55}^{MT}{N}_{i}{\omega }_{x\tau i}\frac{\partial {F}_{\tau }}{\partial z}+{A}_{55}^{M}{F}_{\tau }{\omega }_{z\tau i}\frac{\partial {N}_{i}}{\partial x}\right)\frac{\partial {N}_{j}}{\partial x}\\ &+\left({C}_{44}^{MT}\left({F}_{\tau }{N}_{i}{\omega }_{z\tau i}+{N}_{i}\frac{\partial {F}_{\tau }}{\partial y}\right)+{C}_{44}^{M}\left(-{F}_{\tau }{N}_{i}{\omega }_{z\tau i}+{F}_{\tau }{u}_{y\tau i}\frac{\partial {N}_{i}}{\partial x}\right)\right)\\ &\left(-{F}_{s}{N}_{j}{\delta \omega }_{zsj}+{F}_{s}{\delta u}_{ysj}\frac{\partial {N}_{j}}{\partial x}\right)\\ &+\left({C}_{55}^{MT}\left(-{F}_{\tau }{N}_{i}{\omega }_{y\tau i}+{N}_{i}{u}_{x\tau i}\frac{\partial {F}_{\tau }}{\partial z}\right)+{C}_{55}^{M}\left({F}_{\tau }{N}_{i}{\omega }_{y\tau i}+{F}_{\tau }{u}_{z\tau i}\frac{\partial {N}_{i}}{\partial x}\right)\right)\\ &\left.\left({F}_{s}{N}_{j}{\delta \omega }_{ysj}+{F}_{s}{\delta u}_{zsj}\frac{\partial {N}_{j}}{\partial x}\right)\right\}dxd\Omega \end{aligned}$$

The explicit form of the components of \({\mathbf{k}}_{uu}^{ij\tau s}\) is given as follows:

$${k}_{uuxx}^{ij\tau s}={\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }{C}_{44}^{M}\frac{{\partial F}_{\tau }}{\partial y}\frac{{\partial F}_{s}}{\partial y}dydz+{\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }{C}_{55}^{M}\frac{{\partial F}_{\tau }}{\partial z}\frac{{\partial F}_{s}}{\partial z}dydz+{\int }_{l}\frac{{\partial N}_{i}}{\partial x}\frac{{\partial N}_{j}}{\partial x}dx{\int }_{\Omega }{C}_{11}{F}_{\tau }{F}_{s}dydz$$
$${k}_{uuxy}^{ij\tau s}={\int }_{l}\frac{{\partial N}_{i}}{\partial x}{N}_{j}dx{\int }_{\Omega }{C}_{12}{F}_{\tau }\frac{{\partial F}_{s}}{\partial y}dydz+{\int }_{l}{N}_{i}\frac{{\partial N}_{j}}{\partial x}dx{\int }_{\Omega }{C}_{44}^{MT}\frac{{\partial F}_{\tau }}{\partial y}{F}_{s}dydz$$
$${k}_{uuxz}^{ij\tau s}={\int }_{l}\frac{{\partial N}_{i}}{\partial x}{N}_{j}dx{\int }_{\Omega }{C}_{13}{F}_{\tau }\frac{{\partial F}_{s}}{\partial z}dydz+{\int }_{l}{N}_{i}\frac{{\partial N}_{j}}{\partial x}dx{\int }_{\Omega }{C}_{55}^{MT}\frac{{\partial F}_{\tau }}{\partial z}{F}_{s}dydz$$
$${k}_{uuyx}^{ij\tau s}={\int }_{l}\frac{{\partial N}_{i}}{\partial x}{N}_{j}dx{\int }_{\Omega }{C}_{44}^{MT}{F}_{\tau }\frac{{\partial F}_{s}}{\partial y}dydz+{\int }_{l}{N}_{i}\frac{{\partial N}_{j}}{\partial x}dx{\int }_{\Omega }{C}_{12}\frac{{\partial F}_{\tau }}{\partial y}{F}_{s}dydz$$
$${k}_{uuyy}^{ij\tau s}={\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }{C}_{66}^{M}\frac{{\partial F}_{\tau }}{\partial z}\frac{{\partial F}_{s}}{\partial z}dydz+{\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }{C}_{22}\frac{{\partial F}_{\tau }}{\partial y}\frac{{\partial F}_{s}}{\partial y}dydz+{\int }_{l}\frac{{\partial N}_{i}}{\partial x}\frac{{\partial N}_{j}}{\partial x}dx{\int }_{\Omega }{C}_{44}^{M}{F}_{\tau }{F}_{s}dydz$$
$${k}_{uuyz}^{ij\tau s}={\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }{C}_{66}^{MT}\frac{{\partial F}_{\tau }}{\partial z}\frac{{\partial F}_{s}}{\partial y}dydz+{\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }{C}_{23}\frac{{\partial F}_{\tau }}{\partial y}\frac{{\partial F}_{s}}{\partial z}dydz$$
$${k}_{uuzx}^{ij\tau s}={\int }_{l}\frac{{\partial N}_{i}}{\partial x}{N}_{j}dx{\int }_{\Omega }{C}_{55}^{MT}{F}_{\tau }\frac{{\partial F}_{s}}{\partial z}dydz+{\int }_{l}{N}_{i}\frac{{\partial N}_{j}}{\partial x}dx{\int }_{\Omega }{C}_{13}\frac{{\partial F}_{\tau }}{\partial z}{F}_{s}dydz$$
$${k}_{uuzy}^{ij\tau s}={\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }{C}_{66}^{MT}\frac{{\partial F}_{\tau }}{\partial y}\frac{{\partial F}_{s}}{\partial z}dydz+{\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }{C}_{23}\frac{{\partial F}_{\tau }}{\partial z}\frac{{\partial F}_{s}}{\partial y}dydz$$
$${k}_{uuzz}^{ij\tau s}={\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }{C}_{66}^{M}\frac{{\partial F}_{\tau }}{\partial y}\frac{{\partial F}_{s}}{\partial y}dydz+{\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }{C}_{33}\frac{{\partial F}_{\tau }}{\partial z}\frac{{\partial F}_{s}}{\partial z}dydz+{\int }_{l}\frac{{\partial N}_{i}}{\partial x}\frac{{\partial N}_{j}}{\partial x}dx{\int }_{\Omega }{C}_{55}^{M}{F}_{\tau }{F}_{s}dydz$$

The fundamental nuclei for \({k}_{\omega \omega }^{ij\tau s}\) are given as follows:

$${k}_{\omega \omega xx}^{ij\tau s}={\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }2\left({C}_{66}^{M}-{C}_{66}^{MT}\right){F}_{\tau }{F}_{s}dydz+{\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }{A}_{44}^{M}\frac{{\partial F}_{\tau }}{\partial y}\frac{{\partial F}_{s}}{\partial y}dydz+{\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }{A}_{55}^{M}\frac{{\partial F}_{\tau }}{\partial z}\frac{{\partial F}_{s}}{\partial z}dydz{\int }_{l}\frac{{\partial N}_{i}}{\partial x}\frac{{\partial N}_{j}}{\partial x}dx{\int }_{\Omega }{A}_{11}^{M}{F}_{\tau }{F}_{s}dydz$$
$${k}_{\omega \omega xy}^{ij\tau s}={\int }_{l}\frac{{\partial N}_{i}}{\partial x}{N}_{j}dx{\int }_{\Omega }{A}_{12}{F}_{\tau }\frac{{\partial F}_{s}}{\partial y}dydz+{\int }_{l}{N}_{i}\frac{{\partial N}_{j}}{\partial x}dx{\int }_{\Omega }{A}_{44}^{MT}\frac{{\partial F}_{\tau }}{\partial y}{F}_{s}dydz$$
$${k}_{\omega \omega xz}^{ij\tau s}={\int }_{l}\frac{{\partial N}_{i}}{\partial x}{N}_{j}dx{\int }_{\Omega }{A}_{13}{F}_{\tau }\frac{{\partial F}_{s}}{\partial z}dydz+{\int }_{l}{N}_{i}\frac{{\partial N}_{j}}{\partial x}dx{\int }_{\Omega }{A}_{55}^{MT}\frac{{\partial F}_{\tau }}{\partial z}{F}_{s}dydz$$
$${k}_{\omega \omega yx}^{ij\tau s}={\int }_{l}\frac{{\partial N}_{i}}{\partial x}{N}_{j}dx{\int }_{\Omega }{A}_{44}^{MT}{F}_{\tau }\frac{{\partial F}_{s}}{\partial y}dydz+{\int }_{l}{N}_{i}\frac{{\partial N}_{j}}{\partial x}dx{\int }_{\Omega }{A}_{12}\frac{{\partial F}_{\tau }}{\partial y}{F}_{s}dydz$$
$${k}_{\omega \omega yy}^{ij\tau s}={\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }2\left({C}_{55}^{M}-{C}_{55}^{MT}\right){F}_{\tau }{F}_{s}dydz+{\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }{A}_{66}^{M}\frac{{\partial F}_{\tau }}{\partial z}\frac{{\partial F}_{s}}{\partial z}dydz+{\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }{A}_{22}\frac{{\partial F}_{\tau }}{\partial y}\frac{{\partial F}_{s}}{\partial y}dydz{\int }_{l}\frac{{\partial N}_{i}}{\partial x}\frac{{\partial N}_{j}}{\partial x}dx{\int }_{\Omega }{A}_{44}^{M}{F}_{\tau }{F}_{s}dydz$$
$${k}_{\omega \omega yz}^{ij\tau s}={\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }{A}_{66}^{MT}\frac{{\partial F}_{\tau }}{\partial z}\frac{{\partial F}_{s}}{\partial y}dydz+{\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }{A}_{23}\frac{{\partial F}_{\tau }}{\partial y}\frac{{\partial F}_{s}}{\partial z}dydz$$
$${k}_{\omega \omega zx}^{ij\tau s}={\int }_{l}\frac{{\partial N}_{i}}{\partial x}{N}_{j}dx{\int }_{\Omega }{A}_{55}^{MT}{F}_{\tau }\frac{{\partial F}_{s}}{\partial z}dydz+{\int }_{l}{N}_{i}\frac{{\partial N}_{j}}{\partial x}dx{\int }_{\Omega }{A}_{13}\frac{{\partial F}_{\tau }}{\partial z}{F}_{s}dydz$$
$${k}_{\omega \omega zy}^{ij\tau s}={\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }{A}_{66}^{MT}\frac{{\partial F}_{\tau }}{\partial y}\frac{{\partial F}_{s}}{\partial z}dydz+{\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }{A}_{23}\frac{{\partial F}_{\tau }}{\partial z}\frac{{\partial F}_{s}}{\partial y}dydz$$
$${k}_{\omega \omega zz}^{ij\tau s}={\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }2\left({C}_{44}^{M}-{C}_{44}^{MT}\right){F}_{\tau }{F}_{s}dydz+{\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }{A}_{66}^{M}\frac{{\partial F}_{\tau }}{\partial y}\frac{{\partial F}_{s}}{\partial y}dydz+{\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }{A}_{33}\frac{{\partial F}_{\tau }}{\partial z}\frac{{\partial F}_{s}}{\partial z}dydz{\int }_{l}\frac{{\partial N}_{i}}{\partial x}\frac{{\partial N}_{j}}{\partial x}dx{\int }_{\Omega }{A}_{55}^{M}{F}_{\tau }{F}_{s}dydz$$

The fundamental nuclei for \({k}_{u\omega }^{ij\tau s}\) are given as:

$${k}_{u\omega xy}^{ij\tau s}={\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }\left({C}_{55}^{MT}-{C}_{55}^{M}\right)\frac{{\partial F}_{\tau }}{\partial z}{F}_{s}dydz$$
$${k}_{u\omega xz}^{ij\tau s}={\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }\left({C}_{44}^{M}-{C}_{44}^{MT}\right)\frac{{\partial F}_{\tau }}{\partial y}{F}_{s}dydz$$
$${k}_{u\omega yx}^{ij\tau s}={\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }\left({C}_{66}^{M}-{C}_{66}^{MT}\right)\frac{{\partial F}_{\tau }}{\partial z}{F}_{s}dydz$$
$${k}_{u\omega yz}^{ij\tau s}={\int }_{l}\frac{{\partial N}_{i}}{\partial x}{N}_{j}dx{\int }_{\Omega }\left({C}_{44}^{MT}-{C}_{44}^{M}\right){F}_{\tau }{F}_{s}dydz$$
$${k}_{u\omega zx}^{ij\tau s}={\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }\left({C}_{66}^{MT}-{C}_{66}^{M}\right)\frac{{\partial F}_{\tau }}{\partial y}{F}_{s}dydz$$
$${k}_{u\omega zy}^{ij\tau s}={\int }_{l}\frac{{\partial N}_{i}}{\partial x}{N}_{j}dx{\int }_{\Omega }\left({C}_{55}^{M}-{C}_{55}^{MT}\right){F}_{\tau }{F}_{s}dydz$$
$${k}_{u\omega xx}^{ij\tau s}={k}_{u\omega yy}^{ij\tau s}={k}_{u\omega zz}^{ij\tau s}=0$$

The fundamental nuclei for \({k}_{\omega u}^{ij\tau s}\) are:

$${k}_{\omega uxy}^{ij\tau s}={\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }\left({C}_{66}^{M}-{C}_{66}^{MT}\right){F}_{\tau }\frac{{\partial F}_{s}}{\partial z}dydz$$
$${k}_{\omega uxz}^{ij\tau s}={\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }\left({C}_{66}^{MT}-{C}_{66}^{M}\right){F}_{\tau }\frac{{\partial F}_{s}}{\partial y}dydz$$
$${k}_{\omega uyx}^{ij\tau s}={\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }\left({C}_{55}^{MT}-{C}_{55}^{M}\right){F}_{\tau }\frac{{\partial F}_{s}}{\partial z}dydz$$
$${k}_{\omega uyz}^{ij\tau s}={\int }_{l}{N}_{i}\frac{{\partial N}_{j}}{\partial x}dx{\int }_{\Omega }\left({C}_{55}^{M}-{C}_{55}^{MT}\right){F}_{\tau }{F}_{s}dydz$$
$${k}_{\omega uzx}^{ij\tau s}={\int }_{l}{N}_{i}{N}_{j}dx{\int }_{\Omega }\left({C}_{44}^{M}-{C}_{44}^{MT}\right){F}_{\tau }\frac{{\partial F}_{s}}{\partial y}dydz$$
$${k}_{\omega uzy}^{ij\tau s}={\int }_{l}{N}_{i}\frac{{\partial N}_{j}}{\partial x}dx{\int }_{\Omega }\left({C}_{44}^{MT}-{C}_{44}^{M}\right){F}_{\tau }{F}_{s}dydz$$
$${k}_{\omega uxx}^{ij\tau s}={k}_{\omega uyy}^{ij\tau s}={k}_{\omega uzz}^{ij\tau s}=0$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daraei, B., Shojaee, S. & Hamzehei-Javaran, S. Thermo-mechanical analysis of functionally graded material beams using micropolar theory and higher-order unified formulation. Arch Appl Mech 93, 109–128 (2023). https://doi.org/10.1007/s00419-022-02143-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02143-z

Keywords

Navigation