Skip to main content
Log in

Band gaps in a periodic electro-elastic composite beam structure incorporating microstructure and flexoelectric effects

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A new model for electro-elastic Bernoulli–Euler beams of centrosymmetric cubic materials is proposed, which incorporates microstructure and flexoelectric effects. The wave equations and boundary conditions are derived simultaneously through a variational approach based on Hamilton’s principle. The new beam model is then applied to predict elastic wave band gaps in a periodic electro-elastic composite beam structure. Bloch’s theorem and the transfer matrix method for periodic structures are used to solve the wave equations and determine band gaps. The current model reduces to its flexoelectric and classical elastic counterparts as special cases. To illustrate the new model, the effects of microstructure, flexoelectricity, beam thickness, unit cell length and volume fraction on band gaps are investigated through a parametric study. The numerical results show that the microstructure and flexoelectric effects lead to increased band gap frequencies, and these two effects are important when the beam thickness is at the submicron and micron scales. In addition, it is found that the unit cell length and volume fraction can significantly affect the band gap size at all length scales. These findings indicate that band gap frequencies and size can be tailored by adjusting the microstructural and material parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Espo, M., Abolbashari, M.H., Hosseini, S.M.: Band structure analysis of wave propagation in piezoelectric nano-metamaterials as periodic nano-beams considering the small scale and surface effects. Acta Mech. 231, 2877–2893 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jo, S.H., Yoon, H., Shin, Y.C., Kim, M., Youn, B.D.: Elastic wave localization and harvesting using double defect modes of a phononic crystal. J. Appl. Phys. 127, 164901–1~12 (2020)

    Article  Google Scholar 

  3. Kherraz, N., Chikh-Bled, F.H., Sainidou, R., Morvan, B., Rembert, P.: Tunable phononic structures using Lamb waves in a piezoceramic plate. Phys. Rev. B 99, 094302–1~12 (2019)

    Article  Google Scholar 

  4. Ma, F., Wang, C., Liu, C., Wu, J.H.: Structural designs, principles, and applications of thin-walled membrane and plate-type acoustic/elastic metamaterials. J. Appl. Phys. 129, 231103–1~23 (2021)

    Article  Google Scholar 

  5. Qian, Z.-H., Jin, F., Li, F.-M., Kishimoto, K.: Complete band gaps in two-dimensional piezoelectric phononic crystals with {1–3} connectivity family. Int. J. Solids Struct. 45, 4748–4755 (2008)

    Article  MATH  Google Scholar 

  6. Wilm, M., Ballandras, S., Laude, V., Pastureaud, T.: A full 3D plane-wave-expansion model for 1–3 piezoelectric composite structures. J. Acoust. Soc. Am. 112, 943–952 (2002)

    Article  Google Scholar 

  7. Zhang, G.Y., Shen, W., Gu, S.T., Gao, X.-L., Xin, Z.-Q.: Band gaps for elastic flexural wave propagation in periodic composite plate structures with star-shaped, transversely isotropic, magneto-electro-elastic inclusions. Acta Mech. 232, 4325–4346 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y., Wang, L.: Periodic co-continuous acoustic metamaterials with overlapping locally resonant and Bragg band gaps. Appl. Phys. Lett. 105, 191907–1~5 (2014)

    Article  Google Scholar 

  9. El Sherbiny, M.G., Placidi, L.: Discrete and continuous aspects of some metamaterial elastic structures with band gaps. Arch. Appl. Mech. 88, 1725–1742 (2018)

    Article  Google Scholar 

  10. Liu, L., Hussein, M.I.: Wave motion in periodic flexural beams and characterization of the transition between Bragg scattering and local resonance. J. Appl. Mech. 79, 011003–1~17 (2012)

    Article  Google Scholar 

  11. Wang, P., Yi, Q., Zhao, C., Xing, M., Tang, J.: Wave propagation in periodic track structures: band-gap behaviours and formation mechanisms. Arch. Appl. Mech. 87, 503–519 (2017)

    Article  Google Scholar 

  12. Mindlin, R.D.: Polarization gradient in elastic dielectrics. Int. J. Solids Struct. 4, 637–642 (1968)

    Article  MATH  Google Scholar 

  13. Qu, Y.L., Zhang, G.Y., Fan, Y.M., Jin, F.: A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part I - reconsideration of curvature-based flexoelectricity theory. Math. Mech. Solids. 26, 1647–1659 (2021)

  14. Shingare, K.B., Kundalwal, S.I.: Static and dynamic response of graphene nanocomposite plates with flexoelectric effect. Mech. Mater. 134, 69–84 (2019)

    Article  Google Scholar 

  15. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids. 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  16. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)

    Article  Google Scholar 

  17. Krichen, S., Sharma, P.: Flexoelectricity: a perspective on an unusual electromechanical coupling. J. Appl. Mech. 83, 030801–1~5 (2016)

    Article  Google Scholar 

  18. Ma, W., Cross, L.E.: Flexoelectric effect in ceramic lead zirconate titanate. Appl. Phys. Lett. 86, 072905–1~3 (2005)

    Article  Google Scholar 

  19. Ma, W., Cross, L.E.: Flexoelectricity of barium titanate. Appl. Phys. Lett. 88, 232902–1~3 (2006)

    Article  Google Scholar 

  20. Wang, L., Liu, S., Feng, X., Zhang, C., Zhu, L., Zhai, J., Qin, Y., Wang, Z.L.: Flexoelectronics of centrosymmetric semiconductors. Nat. Nanotechnol. 15, 661–667 (2020)

    Article  Google Scholar 

  21. Ghavanloo, E., Fazelzadeh, S.A., de Sciarra, F.M.: Size-Dependent Continuum Mechanics Approaches: Theory and Applications. Springer, Cham (2021)

    Book  MATH  Google Scholar 

  22. Shaat, M., Ghavanloo, E., Fazelzadeh, S.A.: Review on nonlocal continuum mechanics: physics, material applicability, and mathematics. Mech. Mater. 150, 103587–1~23 (2020)

    Article  Google Scholar 

  23. El Dhaba, A.R.: A model for an anisotropic flexoelectric material with cubic symmetry. Int. J. Appl. Mech. 11, 1950026–1~24 (2019)

    Article  Google Scholar 

  24. Enakoutsa, K., Corte, A.D., Giorgio, I.: A model for elastic flexoelectric materials including strain gradient effects. Math. Mech. Solids 21, 242–254 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Iesan, D.: A theory of thermopiezoelectricity with strain gradient and electric field gradient effects. Eur. J. Mech. A/Solids 67, 280–290 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lurie, S., Solyaev, Y.: On the formulation of elastic and electroelastic gradient beam theories. Contin. Mech. Thermodyn. 31, 1601–1613 (2019)

    Article  MathSciNet  Google Scholar 

  27. Malikan, M., Eremeyev, V.A.: On the dynamics of a visco–piezo–flexoelectric nanobeam. Symmetry 12, 643–1~21 (2020)

    Article  Google Scholar 

  28. Malikan, M., Uglov, N.S., Eremeyev, V.A.: On instabilities and post-buckling of piezomagnetic and flexomagnetic nanostructures. Int. J. Eng. Sci. 157, 103395–1~16 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mao, S., Purohit, P.K.: Insights into flexoelectric solids from strain-gradient elasticity. J. Appl. Mech. 81, 081004–1~10 (2014)

    Article  Google Scholar 

  30. Hadjesfandiari, A.R.: Size-dependent piezoelectricity. Int. J. Solids Struct. 50, 2781–2791 (2013)

    Article  Google Scholar 

  31. Wang, G.F., Yu, S.W., Feng, X.Q.: A piezoelectric constitutive theory with rotation gradient effects. Eur. J. Mech. A/Solids 23, 455–466 (2004)

    Article  MATH  Google Scholar 

  32. Liu, C., Hu, S., Shen, S.: Effect of flexoelectricity on band structures of one-dimensional phononic crystals. J. Appl. Mech. 81, 051007–1~6 (2014)

    Article  Google Scholar 

  33. Yang, W., Hu, T., Liang, X., Shen, S.: On band structures of layered phononic crystals with flexoelectricity. Arch. Appl. Mech. 88, 629–644 (2018)

    Article  Google Scholar 

  34. Chen, J.: Micropolar theory of flexoelectricity. J. Adv. Math. Appl. 1(2), 269–274 (2012)

    Article  Google Scholar 

  35. Li, A., Zhou, S., Qi, L., Chen, X.: A flexoelectric theory with rotation gradient effects for elastic dielectrics. Model. Simul. Mat. Sci. Eng. 24, 015009–1~16 (2016)

    Google Scholar 

  36. Poya, R., Gil, A.J., Ortigosa, R., Palma, R.: On a family of numerical models for couple stress based flexoelectricity for continua and beams. J. Mech. Phys. Solids 125, 613–652 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Romeo, M.: Polarization in dielectrics modeled as micromorphic continua. Z. Angew. Math. Phys. 66, 1233–1247 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gad, A.I., Gao, X.-L.: Two versions of the extended Hill’s lemma for non-Cauchy continua based on the couple stress theory. Math. Mech. Solids 26, 244–262 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  39. Koiter, W.T.: Couple-stresses in the theory of elasticity. Proc Konink Ned Akad van Wetensch B 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  40. Mindlin, R.D.: Equations of high frequency vibrations of thermopiezoelectric crystal plates. Int. J. Solids Struct. 10, 625–637 (1974)

    Article  MATH  Google Scholar 

  41. Park, S.K., Gao, X.-L.: Bernoulli-Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  Google Scholar 

  42. Qu, Y.L., Jin, F., Yang, J.S.: Effects of mechanical fields on mobile charges in a composite beam of flexoelectric dielectrics and semiconductors. J. Appl. Phys. 127, 194502–1~6 (2020)

    Article  Google Scholar 

  43. Zhang, G.Y., Gao, X.-L.: A new Bernoulli-Euler beam model based on a reformulated strain gradient elasticity theory. Math. Mech. Solids 25, 630–643 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, G.Y., Gao, X.-L., Zheng, C.Y., Mi, C.W.: A non-classical Bernoulli-Euler beam model based on a simplified micromorphic elasticity theory. Mech. Mater. 161, 103967–1~13 (2021)

    Article  Google Scholar 

  45. Ai, L., Gao, X.-L.: Micromechanical modeling of 3-D printable interpenetrating phase composites with tailorable effective elastic properties including negative Poisson’s ratio. J. Micromech. Mol. Phys. 2, 1750015–1~21 (2017)

    Article  Google Scholar 

  46. Haussühl, S.: Physical Properties of Crystals: An Introduction. Wiley, Weinheim (2007)

    Book  Google Scholar 

  47. Mindlin, R.D.: Micro-structure in linear elasticity. Arch Ration Mech Anal 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int J Solids Struct 4, 109–124 (1968)

    Article  MATH  Google Scholar 

  49. Polizzotto, C.: A hierarchy of simplified constitutive models within isotropic strain gradient elasticity. Eur J Mech A/Solids 61, 92–109 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ma, H.M., Gao, X.-L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics, 2nd edn. Wiley, Hoboken (2002)

    Google Scholar 

  52. Zhang, G.Y., Qu, Y.L., Gao, X.-L., Jin, F.: A transversely isotropic magneto-electro-elastic Timoshenko beam model incorporating microstructure and foundation effects. Mech Mater. 149, 103412–1~13 (2020)

    Article  Google Scholar 

  53. Gao, X.-L., Mall, S.: Variational solution for a cracked mosaic model of woven fabric composites. Int. J. Solids Struct. 38, 855–874 (2001)

    Article  MATH  Google Scholar 

  54. Zhang, G.Y., Gao, X.-L., Bishop, J.E., Fang, H.E.: Band gaps for elastic wave propagation in a periodic composite beam structure incorporating microstructure and surface energy effects. Compos. Struct. 189, 263–272 (2018)

    Article  Google Scholar 

  55. Gao, R.Z., Zhang, G.Y., Ioppolo, T., Gao, X.-L.: Elastic wave propagation in a periodic composite beam structure: a new model for band gaps incorporating surface energy, transverse shear and rotational inertia effects. J. Micromech. Mol. Phys. 3, 1840005–1~22 (2018)

    Article  Google Scholar 

  56. Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, New York (2004)

    MATH  Google Scholar 

  57. Zhang, G.Y., Zheng, C.Y., Qiu, X., Mi, C.W.: Microstructure-dependent band gaps for elastic wave propagation in a periodic microbeam structure. Acta Mech. Solida Sin. 34, 527–538 (2021)

    Article  Google Scholar 

  58. Prakash, B.S., Varma, K.B.R.: Dielectric behavior of CCTO/epoxy and Al-CCTO/epoxy composites. Compos. Sci. Technol. 67, 2363–2368 (2007)

    Article  Google Scholar 

  59. Bower, A.F.: Applied Mechanics of Solids. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  60. Wang, B., Zhou, S., Zhao, J., Chen, X.: Size-dependent pull-in instability of electrostatically actuated microbeam-based MEMS. J. Micromech. Microeng. 21, 027001–1~6 (2011)

    Article  Google Scholar 

  61. Shu, L., Liang, R., Rao, Z., Fei, L., Ke, S., Wang, Y.: Flexoelectric materials and their related applications: A focused review. J. Adv. Ceram. 8, 153–173 (2019)

    Article  Google Scholar 

  62. Qu, Y.L., Jin, F., Yang, J.S.: Magnetically induced charge redistribution in the bending of a composite beam with flexoelectric semiconductor and piezomagnetic dielectric layers. J. Appl. Phys. 129, 064503–1~10 (2021)

    Article  Google Scholar 

  63. Zhang, G.Y., Gao, X.-L.: Band gaps for wave propagation in 2-D periodic three-phase composites with coated star-shaped inclusions and an orthotropic matrix. Compos. B Eng. 182, 107319–1~13 (2020)

    Article  Google Scholar 

  64. Goffaux, C., Sánchez-Dehesa, J., Yeyati, A.L., Lambin, P., Khelif, A., Vasseur, J.O., Djafari-Rouhani, B.: Evidence of Fano-like interference phenomena in locally resonant materials. Phys. Rev. Lett. 88, 225502–1~4 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

GYZ gratefully acknowledges the support by the National Natural Science Foundation of China (Grant No. 12002086) and Zhishan Youth Scholar Program of SEU. The authors also would like to thank Dr. Esmaeal Ghavanloo and two anonymous reviewers for their encouragement and helpful comments on an earlier version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Y. Zhang or X.-L. Gao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is submitted for the Special Issue on Mechanics of Size-Dependent Materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G.Y., He, Z.Z., Gao, XL. et al. Band gaps in a periodic electro-elastic composite beam structure incorporating microstructure and flexoelectric effects. Arch Appl Mech 93, 245–260 (2023). https://doi.org/10.1007/s00419-021-02088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02088-9

Keywords

Navigation