Skip to main content
Log in

On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper deals with the dynamics and control of underactuated nonholonomic mechanical systems. It is shown in this investigation that the same analytical methods can be used for effectively solving both the forward and the inverse dynamic problems relative to underactuated mechanical systems subjected to a general set of holonomic and/or nonholonomic algebraic constraint equations. The approach developed in this work is based on the combination of two fundamental methods of analytical dynamics, namely the Udwadia–Kalaba equations and the Underactuation Equivalence Principle. While the Udwadia–Kalaba equations represent a fundamental mathematical tool of classical mechanics, the Underactuation Equivalence Principle is a new method recently discovered in the field of analytical dynamics and is associated with nonholonomic mechanical systems. In the paper, these two important analytical methods are discussed in detail. Furthermore, numerical experiments are performed in this investigation in order to demonstrate the effectiveness of the proposed approach considering as an illustrative example of a dynamic model a mobile robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Villecco, F., Pellegrino, A.: Evaluation of uncertainties in the design process of complex mechanical systems. Entropy 19(9), 475 (2017)

    Article  Google Scholar 

  2. Villecco, F., Pellegrino, A.: Entropic measure of epistemic uncertainties in multibody system models by axiomatic design. Entropy 19(7), 291 (2017)

    Article  Google Scholar 

  3. Gawronski, W.K.: Advanced Structural Dynamics and Active Control of Structures. Springer, New York (2004)

    Book  MATH  Google Scholar 

  4. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, NJ (1991)

    MATH  Google Scholar 

  5. Sinha, N.K., Ananthkrishnan, N.: Elementary Flight Dynamics with an Introduction to Bifurcation and Continuation Methods. CRC Press, Boca Raton (2013)

    Google Scholar 

  6. Sinha, N.K., Ananthkrishnan, N.: Advanced Flight Dynamics with Elements of Flight Control, CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  7. Concilio, A., De Simone, M.C., Rivera, Z.B., Guida, D.: A new semi-active suspension system for racing vehicles. FME Trans. 45(4), 578–584 (2017)

    Article  Google Scholar 

  8. Quatrano, A., De Simone, M.C., Rivera, Z.B., Guida, D.: Development and implementation of a control system for a retrofitted CNC machine by using arduino. FME Trans. 45(4), 578–584 (2017)

    Article  Google Scholar 

  9. Sharifzadeh, M., Akbari, A., Timpone, F., Daryani, R.: Vehicle tyre/road interaction modeling and identification of its parameters using real-time trust-region methods. IFAC-PapersOnLine 49(3), 111–116 (2016)

    Article  MathSciNet  Google Scholar 

  10. Sharifzadeh, M., Timpone, F., Farnam, A., Senatore, A., Akbari, A.: Tyre-Road Adherence Conditions Estimation for Intelligent Vehicle Safety Applications. Advances in Italian Mechanism Science, pp. 389–398. Springer, Cham (2017)

    Google Scholar 

  11. Khalil, H.K.: Nonlinear Control. Prentice Hall, Englewood Cliffs, NJ (2014)

    Google Scholar 

  12. Sands, T.: Nonlinear-adaptive mathematical system identification. Computation 5(4), 47 (2017)

    Article  MathSciNet  Google Scholar 

  13. Strano, S., Terzo, M.: A SDRE-based tracking control for a hydraulic actuation system. Mech. Syst. Signal Process. 60, 715–726 (2015)

    Article  Google Scholar 

  14. Strano, S., Terzo, M.: Accurate state estimation for a hydraulic actuator via a SDRE nonlinear filter. Mech. Syst. Signal Process. 75, 576–588 (2016)

    Article  Google Scholar 

  15. Xu, J.X., Guo, Z.Q., Lee, T.H.: Design and implementation of a Takagi-Sugeno-type fuzzy logic controller on a two-wheeled mobile robot. IEEE Trans. Ind. Electron. 60(12), 5717–5728 (2013)

    Article  Google Scholar 

  16. Chwa, D.: Fuzzy adaptive tracking control of wheeled mobile robots with state-dependent kinematic and dynamic disturbances. IEEE Trans. Fuzzy Syst. 20(3), 587–593 (2012)

    Article  MathSciNet  Google Scholar 

  17. Mohareri, O., Dhaouadi, R., Rad, A.B.: Indirect adaptive tracking control of a nonholonomic mobile robot via neural networks. Neurocomputing 88, 54–66 (2012)

    Article  Google Scholar 

  18. Su, K.H., Chen, Y.Y., Su, S.F.: Design of neural-fuzzy-based controller for two autonomously driven wheeled robot. Neurocomputing 73(13–15), 2478–2488 (2010)

    Article  Google Scholar 

  19. Park, B.S., Yoo, S.J., Park, J.B., Choi, Y.H.: Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty. IEEE Trans. Control Syst. Technol. 17(1), 207–214 (2009)

    Article  Google Scholar 

  20. Shabana, A.A.: Dynamics of Multibody Systems, 4th edn. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  21. De Jalon, J.G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer Science and Business Media, Berlin (2012)

    Google Scholar 

  22. Patel, M., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 230(1), 69–84 (2016)

    Google Scholar 

  23. Poetsch, G., Evans, J., Meisinger, R., Kortum, W., Baldauf, W., Veitl, A., Wallaschek, J.: Pantograph/catenary dynamics and control. J. Veh. Syst. Dyn. 28(2–3), 159–195 (1997)

    Article  Google Scholar 

  24. Seo, J.H., Kim, S.W., Jung, I.H., Park, T.W., Mok, J.Y., Kim, Y.G., Chai, J.B.: Dynamic analysis of a pantograph/catenary system using absolute nodal coordinates. J. Veh. Syst. Dyn. 44(8), 615–630 (2006)

    Article  Google Scholar 

  25. Seo, J.H., Sugiyama, H., Shabana, A.A.: Three-dimensional large deformation analysis of the multibody pantograph/catenary systems. J. Nonlinear Dyn. 42(2), 199–215 (2005)

    Article  MATH  Google Scholar 

  26. Sun, J., Tian, Q., Hu, H.: Structural optimization of flexible components in a flexible multibody system modeled via ANCF. Mech. Mach. Theory 104, 59–80 (2016)

    Article  Google Scholar 

  27. Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1–2), 25–47 (2011)

    Article  MATH  Google Scholar 

  28. Barbagallo, R., Sequenzia, G., Oliveri, S.M., Cammarata, A.: Dynamics of a high-performance motorcycle by an advanced multibody/control co-simulation. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 230(2), 207–221 (2016)

    Google Scholar 

  29. Cammarata, A., Angeles, J., Sinatra, R.: Kinetostatic and inertial conditioning of the McGill Schonflies-motion generator. Adv. Mech. Eng. 2, 186203 (2010)

    Article  Google Scholar 

  30. Cammarata, A.: Optimized design of a large-workspace 2-DOF parallel robot for solar tracking systems. Mech. Mach. Theory 83, 175–186 (2015)

    Article  Google Scholar 

  31. Goldstein, H., Poole, C.P., Safko, J.L.: Classical Mechanics. Pearson New International Edition, Essex (2014)

    MATH  Google Scholar 

  32. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning, and Control. Springer Advanced Textbooks in Control and Signal Processing Series. Springer, London (2009)

    Book  Google Scholar 

  33. Udwadia, F.E., Schutte, A.D.: Equations of motion for general constrained systems in Lagrangian mechanics. Acta Mech. 213(1–2), 111–129 (2010)

    Article  MATH  Google Scholar 

  34. Guida, D., Pappalardo, C.M.: Forward and inverse dynamics of nonholonomic mechanical systems. Meccanica 49(7), 1547–1559 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81(4), 1841–1869 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Meirovitch, L.: Methods of Analytical Dynamics. Courier Corporation, Chelmsford (2010)

    MATH  Google Scholar 

  37. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  38. Lanczos, C.: The Variational Principles of Mechanics. Courier Corporation, Chelmsford (2012)

    MATH  Google Scholar 

  39. Shabana, A.A.: Computational Continuum Mechanics, 3rd edn. Wiley, London (2018)

    Book  MATH  Google Scholar 

  40. Shabana, A.A.: Computational Dynamics, 2nd edn. Wiley, London (2009)

    MATH  Google Scholar 

  41. Meirovitch, L.: Fundamentals of Vibrations. Waveland Press, Long Grove (2010)

    Google Scholar 

  42. Flannery, M.R.: The enigma of nonholonomic constraints. Am. J. Phys. 73(3), 265–272 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Landau, L.D., Lifshitz, E.M.: Mechanics. Butterworth-Heinemann, London (1976)

    MATH  Google Scholar 

  44. Flannery, M.R.: The elusive D’Alembert–Lagrange dynamics of nonholonomic systems. Am. J. Phys. 79(9), 932–944 (2011)

    Article  Google Scholar 

  45. Flannery, M.R.: D’Alembert–Lagrange analytical dynamics for nonholonomic systems. J. Math. Phys. 52(3), 032705 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Greiner, W.: Classical Mechanics: Systems of Particles and Hamiltonian Dynamics. Springer Science and Business Media, Berlin (2009)

    Google Scholar 

  47. Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. Math. Phys. Sci. 439(1906), 407–410 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hertz, H.: The Principles of Mechanics Presented in a New Form. Courier Corporation, Chelmsford (2003)

    Google Scholar 

  49. Ramm, E.: Principles of least action and of least constraint. GAMMMitteilungen 34(2), 164–182 (2011)

    MathSciNet  MATH  Google Scholar 

  50. Pennestrí, E., Valentini, P.P., De Falco, D.: An application of the Udwadia–Kalaba dynamic formulation to flexible multibody systems. J. Frankl. Inst. 347(1), 173–194 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Udwadia, F.E., Kalaba, R.E.: On motion. J. Frankl. Inst. 330(3), 571–577 (1993)

    Article  MATH  Google Scholar 

  52. Udwadia, F.E., Kalaba, R.E.: On the foundations of analytical dynamics. Int. J. Non-linear Mech. 37(6), 1079–1090 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  53. Udwadia, F.E., Wanichanon, T.: On general nonlinear constrained mechanical systems. Numer. Algebra Control Optim. 3(3), 425–443 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. De Falco, D., Pennestrí, E., Vita, L.: Investigation of the influence of pseudoinverse matrix calculations on multibody dynamics simulations by means of the Udwadia–Kalaba formulation. J. Aerosp. Eng. 22(4), 365–372 (2009)

    Article  Google Scholar 

  55. Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 462(2071), 2097–2117 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  56. Udwadia, F.E., Wanichanon, T.: Hamel’s paradox and the foundations of analytical dynamics. Appl. Math. Comput. 217(3), 1253–1265 (2010)

    MathSciNet  MATH  Google Scholar 

  57. Udwadia, F.E.: Equations of motion for constrained multibody systems and their control. J. Optim. Theory Appl. 127(3), 627–638 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  58. Udwadia, F.E.: Optimal tracking control of nonlinear dynamical systems. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 464(2097), 2341–2363 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  59. Fantoni, I., Lozano, R.: Non-Linear Control for Underactuated Mechanical Systems. Springer Science and Business Media, Berlin (2002)

    Book  Google Scholar 

  60. Golub, G.H., Van Loan, C.F.: Matrix Computations. JHU Press, Baltimore (2012)

    MATH  Google Scholar 

  61. Strang, G.: Introduction to Linear Algebra. Wellesley-Cambridge Press, Wellesley (1993)

    MATH  Google Scholar 

  62. Kane, T.R., Levinson, D.A.: Dynamics Theory and Applications. McGraw Hill, New York (1985)

    Google Scholar 

  63. Wehage, R.A., Haug, E.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. 104(1), 247–255 (1982)

    Article  Google Scholar 

  64. Wehage, K.T., Wehage, R.A., Ravani, B.: Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring. Mech. Mach. Theory 92, 464–483 (2015)

    Article  Google Scholar 

  65. De Simone, M.C., Russo, S., Rivera, Z.B., Guida, D.: Multibody model of a UAV in presence of wind fields. In: International Conference on Control, Artificial Intelligence, Robotics, and Optimization (ICCAIRO) IEEE, Prague, Czech Republic, 20–22 May 2017, pp. 83–88 (2017)

  66. De Simone, M.C., Guida, D.: On the development of a low cost device for retrofitting tracked vehicles for autonomous navigation. In: Programme and Proceedings of the XXIII Conference of the Italian Association of Theoretical and Applied Mechanics (AIMETA 2017), 4–7/09/2017, Salerno, Italy, 2017, pp. 71–82 (2017)

  67. De Simone, M.C., Guida, D.: Modal coupling in presence of dry friction. Machines 6(1), 8 (2018)

    Article  Google Scholar 

  68. De Simone, M.C., Rivera, Z.B., Guida, D.: Obstacle avoidance system for unmanned ground vehicles by using ultrasonic sensors. Machines 6(2), 18 (2018)

    Article  Google Scholar 

  69. De Simone, M.C., Guida, D.: Identification and Control of an Unmanned Ground Vehicle by using Arduino. UPB Scientific Bulletin, Series D: Mechanical Engineering 80(1), 141–154 (2018)

    Google Scholar 

  70. De Simone, M.C., Rivera, Z.B., Guida, D.: Finite element analysis on squeal-noise in railway applications. FME Trans. 46(1), 93–100 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research paper was principally developed by the first author (Carmine M. Pappalardo). The detailed review carried out by the second author (Domenico Guida) considerably improved the quality of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine M. Pappalardo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pappalardo, C.M., Guida, D. On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots. Arch Appl Mech 89, 669–698 (2019). https://doi.org/10.1007/s00419-018-1491-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1491-6

Keywords

Navigation