Skip to main content
Log in

Theoretical approach of characterizing the crack-tip constraint effects associated with material’s fracture toughness

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The conversion problem of plane strain fracture toughness (\(K_\mathrm{IC}\)) which is necessarily measured according to ASTM standards, to lower constraint applications generally existing in engineering structures, has led to extensive material and labor costs. The present paper explores and quantifies the crack-tip constraint effects by the crack-tip plastic zone to serve the prediction of material’s fracture toughness. Firstly, the approximate three-dimensional crack front displacement fields are obtained by using the variable separation method. The three-dimensional stress field is then used to predict the shape and size of the crack-tip plastic zone. Secondly, the two-dimensional in-plane and the three-dimensional out-of-plane geometric constraint effects are quantified separately, and two constraint factors, i.e., \(\alpha _\mathrm{in}\) and \(\alpha _\mathrm{out}\) are proposed. A series of configurations of the two-dimensional and three-dimensional crack-tip plastic zones that vary with the specimen’s geometric size (plate width, thickness, etc.) are presented, which will facilitate a better understanding of the crack-tip constraint effect. Finally, the present method is applied to elucidate the significant “thickness effect” of the X70 pipeline steel’s fracture toughness by using the out-of-plane constraint factor \(\alpha _\mathrm{out}\). The corresponding results are compared with the experimentally measured and FEM-predicted fracture toughness \(K_\mathrm{C}\). It is concluded that the parameters \(\alpha _\mathrm{out}\) and the fracture toughness \(K_\mathrm{C}\) can be correlated with each other, which will be beneficial to the prediction of material’s fracture toughness and the avoidance of experimental costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

a :

Crack length

\(A_{0}\) :

Area of crack-tip plastic zone with infinite plate width in-plane stress

\(A_{2}\) :

Secondary fracture parameter in \(J{-}A_{2}\) concept

\(A_{n}\) :

Area of crack-tip plastic zone in-plane strain

\(A_{\mathrm{p}}\) :

A unified constraint parameter based on the equivalent plastic train

\(A_{y}\) :

Area of crack-tip plastic zone with finite width—plane stress state

B :

Plate thickness

CT:

Compact tension

E :

Young’s modulus

F :

The load applied to the three-point bending specimen

FEM:

Finite element method

\(F_{Q}\) :

The critical load of three-point bending test at fracture

f(S):

The geometric correction factor of \(K_{\mathrm{I}}\)

\(G_\mathrm{C}\) :

Critical energy release rate at fracture

J :

J-integral

\(J_\mathrm{C}\) :

Fracture toughness characterized by J-integral

h :

Half-thickness of the 3D plate

\(K_\mathrm{C}\) :

Fracture toughness

\(K_\mathrm{I}\) :

Stress intensity factor of mode I crack

\(K_\mathrm{IC}\) :

Plane strain fracture toughness

L :

Plate length

Q :

A constraint parameter based on elastic–plastic finite element method calculations

\(r_{0}\) :

Crack-tip elastic–plastic boundary for infinite plate width—plane stress state

\(r_{K}\) :

Radius of the elastic stress intensity factor \(K_\mathrm{I}\) dominated zone

\(r_{n}\) :

The crack-tip elastic–plastic boundary line—plane strain state

\(r_{y}\) :

Crack-tip elastic–plastic boundary

\(r,\theta , z\) :

Cylindrical coordinates

S :

The ratio of crack length to width of plate

\(S_{L}\) :

The span length of SENB specimen

SENB:

Single-edge notched bend

SIF:

Stress intensity factor

SSY:

Small-scale yielding

T :

T-stress

\(T_{z}\) :

Out-of-plane stress constraint factor

\(T_{33}\) :

Out-of-plane component of T-stress

uvw :

The 3D crack front displacement field

\(u_{n}, v_{n}\) :

Crack front x- and y-direction displacement—plane strain state

\(V_{y}\) :

Volume of 3D crack-tip plastic zone

\(w_{s}\) :

Crack front z-direction displacement—plane stress state

W :

Plate width

xyz :

Rectangular coordinates

\(\alpha _\mathrm{in}\) :

In-plane constraint factor

\(\alpha _\mathrm{out}\) :

Out-of-plane constraint factor

\(\lambda \), \(\mu \) :

Material’s Lame’s constants

\(\eta (z), \zeta (z)\) :

The undetermined functions of 3D crack front displacement

\(\upsilon \) :

Poisson’s ratio

\(\sigma \) :

Far-field tensile load

\(\sigma _{i}\) :

Principal stresses

\(\sigma _{s}\) :

Yield strength of material

\(\sigma _{e}\) :

Huber–Mises–Hencky stress

\(\sigma _{x}, \sigma _{y}, \sigma _{z}\) :

3D crack front normal stress components

\(\tau _{xy}, \tau _{xz}, \tau _{yz}\) :

3D crack front shear stress components

\(\varepsilon _{x},\varepsilon _{y}, \varepsilon _{z}\) :

3D crack front normal strain components

\(\varepsilon _{xn},\varepsilon _{yn}\) :

The crack front strain components—plane strain state

\(\varepsilon _{\mathrm{p}}\) :

The equivalent plastic strain y

\(\gamma _{xy}, \gamma _{xz}, \gamma _{yz}\) :

The 3D crack front shear strain components

\(\varPhi \) :

A constraint parameter defined by the area of plastic zone

References

  1. GB/T 4161: Metallic materials-Determination of plane-strain fracture toughness (2007)

  2. ASTM E1820-11: Standard test method for measurement of fracture toughness. American Society for Testing and Materials (2011)

  3. Nevalainen, M., Dodds, R.H.: Numerical investigation of 3-D constraint effects on brittle fracture in SE (B) and C (T) specimens. Int. J. Fract. 74, 131–161 (1996)

    Article  Google Scholar 

  4. Masanori, K.: Study on the effect of the crack length on the \(\text{ J }_{Ic}\) value. Nucl. Eng. Des. 174, 41–49 (1997)

    Article  Google Scholar 

  5. Wang, H.W., Kang, Y.L., Zhang, Z.F., Qin, Q.H.: Size effect on the fracture toughness of metallic foil. Int. J. Fract. 123, 177–185 (2003)

    Article  Google Scholar 

  6. Kang, Y.L., Zhang, Z.F., Wang, H.W., Qin, Q.H.: Experimental investigations of the effect of thickness on fracture toughness of metallic foils. Mater. Sci. Eng. A 394, 312–319 (2005)

    Article  Google Scholar 

  7. Mostafavi, M., Smith, D.J., Pavier, M.J.: Reduction of measured toughness due to out-of-plane constraint in ductile fracture of aluminium alloy specimens. Fatigue Fract. Eng. Mater. Struct. 33, 724–739 (2010)

    Google Scholar 

  8. Yang, J., Wang, G.Z., Xuan, F.Z., Tu, S.T.: Unified correlation of in-plane and out-of-plane constraints with fracture toughness. Fatigue Fract. Eng. Mater. Struct. 37, 132–145 (2014)

    Article  Google Scholar 

  9. Mu, M.Y., Wang, G.Z., Tu, S.T., Xuan, F.Z.: Three-dimensional analyses of in-plane and out-of-plane crack-tip constraint characterization for fracture specimens. Fatigue Fract. Eng. Mater. Struct. 39, 1461–1476 (2016)

    Article  Google Scholar 

  10. Kim, J., Zhang, G.H., Gao, X.S.: Modeling of ductile fracture: application of the mechanism-based concepts. Int. J. Solids Struct. 44, 1844–1862 (2007)

    Article  MATH  Google Scholar 

  11. Hancock, J.W., Du, Z.Z.: Two parameters characterization of elastic–plastic crack-tip fields. J. Appl. Mech. 113, 104–110 (1991)

    Google Scholar 

  12. Bilby, B.A., Cardew, G.E., Goldthorpe, M.R., Howard, I.C.: A finite element investigation of the effect of specimen geometry on the fields of stress and strain at the tips of stationary cracks. In: Size Effects in Fracture. London: Mechanical Engineering Publications Limited, pp. 37–46 (1986)

  13. Sumpter, J.D.G.: An experimental investigation of the T-stress approach. Constraint effects in fracture. ASTM STP 1171, 492–502 (1993)

    Google Scholar 

  14. Tregoning, R.L., Joyce, J.A.: Application of T-stress based constraint correction to A533B steel fracture toughness data. Fatigue and fracture mechanics. ASTM STP 1417(33), 307–327 (2002)

    Google Scholar 

  15. O’Dowd, N.P., Shih, C.F.: Family of crack-tip fields characterized by a triaxiality parameter—I: structure of fields. J. Mech. Phys. Solids 39, 989–1015 (1991)

    Article  Google Scholar 

  16. O’Dowd, N.P., Shih, C.F.: Family of crack-tip fields characterized by a triaxiality parameter—II: fracture applications. J. Mech. Phys. Solids 40, 939–963 (1992)

    Article  Google Scholar 

  17. O’ Dowd, N.P.: Application of two parameter approaches in elastic–plastic fracture mechanics. Eng. Fract. Mech. 52, 445–465 (1995)

    Article  Google Scholar 

  18. O’Dowd N.P., Shih, C.F.: Two-parameter fracture mechanics: theory and applications. In: Fracture mechanics. ASTM STP 1207, vol. 24, pp. 21–47 (2002)

  19. Yang, S.: Higher order asymptotic crack-tip fields in a power-law hardening material. Ph.D. Dissertation, University of South Carolina, Columbia, South Carolina (1993)

  20. Yang, S., Chao, Y.J., Sutton, M.A.: Higher-order asymptotic fields in a power-law hardening material. Eng. Fract. Mech. 45, 1–20 (1993)

    Article  Google Scholar 

  21. Chao, Y.J., Yang, S., Sutton, M.A.: On the fracture of solids characterized by one or two parameters: theory and practice. J. Mech. Phys. Solids 42, 629–647 (1994)

    Article  Google Scholar 

  22. Li, Y.C., Wang, Z.Q.: High-order asymptotic field of tensile plane-strain nonlinear crack problems. Sci. Sin. 29, 941–955 (1986)

    MATH  Google Scholar 

  23. Sharma, S.M., Aravas, N.: Determination of higher-order terms in asymptotic elastoplastic crack tip solutions. J. Mech. Phys. Solids 39, 1043–1072 (1991)

    Article  MATH  Google Scholar 

  24. Zhu, X.K., Joyce, J.A.: Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. Eng. Fract. Mech. 85, 1–46 (2012)

    Article  Google Scholar 

  25. Irwin, G.R., Kies, J.A., Smith, H.L.: Fracture strengths relative to onset and arrest of crack propagation. Proc. Am. Soc. Test Mater. 58, 640–660 (1958)

    Google Scholar 

  26. Guo, W.L.: Elastoplastic three dimensional crack border field—I. Singular structure of the field. Eng. Fract. Mech. 46, 93–104 (1993)

    Article  Google Scholar 

  27. Guo, W.L.: Elastoplastic three dimensional crack border field—II. Asymptotic solution for the field. Eng. Fract. Mech. 46, 105–113 (1993)

    Article  Google Scholar 

  28. Guo, W.L.: Elasto-plastic three-dimensional crack border field—III. Fracture parameters. Eng. Fract. Mech. 51, 51–71 (1995)

    Article  Google Scholar 

  29. Shahani, A.R., Rastegar, M., Dehkordi, M.B., Moayeri, K.H.: Experimental and numerical investigation of thickness effect on ductile fracture toughness of steel alloy sheets. Eng. Fract. Mech. 77, 646–659 (2010)

    Article  Google Scholar 

  30. Meshii, T., Tanaka, T.: Experimental T\(_{33}\)-stress formulation of test specimen thickness effect on fracture toughness in the transition temperature region. Eng. Fract. Mech. 77, 867–877 (2010)

    Article  Google Scholar 

  31. Meshii, T., Lu, K., Takamura, R.: A failure criterion to explain the test specimen thickness effect on fracture toughness in the transition temperature region. Eng. Fract. Mech. 104, 184–197 (2013)

    Article  Google Scholar 

  32. Lu, K., Meshii, T.: Application of T\(_{33}\)-stress to predict the lower bound fracture toughness for increasing the test specimen thickness in the transition temperature region. Adv. Mater. Sci. Eng. 16, 2899–2906 (2014)

    Google Scholar 

  33. Tkach, Y., Burdekin, F.M.: A three-dimensional analysis of fracture mechanics test pieces of different geometries—part 1 stress-state ahead of the crack tip. Int. J. Press. Ves. Pip. 93, 42–50 (2012)

    Article  Google Scholar 

  34. Tkach, Y., Burdekin, F.M.: A three-dimensional analysis of fracture mechanics test pieces of different geometries—Part 2 constraint and material variations. Int. J. Press. Ves. Pip. 94, 51–56 (2012)

    Article  Google Scholar 

  35. Shlyannikov, V.N., Boychenko, N.V., Tumanov, A.V., Fernandez-Canteli, A.: The elastic and plastic constraint parameters for three-dimensional problems. Eng. Fract. Mech. 127, 83–96 (2014)

    Article  Google Scholar 

  36. Folias, E.S.: On the three-dimensional theory of cracked plates. J. Appl. Mech. 42, 663–674 (1975)

    Article  MATH  Google Scholar 

  37. Kotousov, A., Lazzarin, P., Berto, F., Pook, L.P.: Three-dimensional stress states at crack tip induced by shear and anti-plane loading. Eng. Fract. Mech. 108, 65–74 (2013)

    Article  Google Scholar 

  38. Lazzarin, P., Zappalorto, M., Berto, F.: Three-dimensional stress fields due to notches in plates under linear elastic and elastic–plastic conditions. Fatigue Fract. Eng. Mater. Struct. 38, 140–153 (2015)

    Article  Google Scholar 

  39. Pook, L.P.: A fifty year retrospective review of three dimensional effects at cracks and sharp notches. Fatigue Fract. Eng. Mater. Struct. 36, 699–723 (2013)

    Article  Google Scholar 

  40. Irwin, G.R.: Fracture testing of high-strength sheet materials under conditions appropriate for stress analysis. US Naval Research Laboratory (1960)

  41. ASTM E561-10. Standard test method for K-R curve determination. American Society for Testing and Materials (2011)

  42. ASTM E2472-06e1. Standard test method for determination of resistance to stable crack extension under low-constraint conditions. American Society for Testing and Materials (2011)

  43. Anderson, T.L., Dodds, R.H.: Specimen size requirements for fracture toughness testing in the transition region. J. Test. Eval. 19, 123–134 (1991)

    Article  Google Scholar 

  44. Theiss, T.J., Bryson, J.W.: Influence of crack depth on fracture toughness of reactor pressure vessel steel. In: Constraint Effects in Fracture, ASTM STP 1171: Baltimore, MD, pp. 104–119 (1993)

  45. Mostafavi, M., Pavier, M.J., Smith, D.J.: Unified measure of constraint, ESIA10: Manchester, UK (2009)

  46. Mostafavi, M., Smith, D.J., Pavier, M.J.: Fracture of aluminium alloy 2024 under biaxial and triaxial loading. Eng. Fract. Mech. 78, 1705–1716 (2011)

    Article  Google Scholar 

  47. Yang, J., Wang, G.Z., Xuan, F.Z., Tu, S.T.: Unified characterization of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain. Fatigue Fract. Eng. Mater. Struct. 36, 504–514 (2013)

    Article  Google Scholar 

  48. Yang, J., Wang, G.Z., Xuan, F.Z., Tu, S.T.: Unified correlation of in-plane and out-of-plane constraint with fracture resistance of a dissimilar metal welded joint. Eng. Fract. Mech. 115, 296–307 (2014)

    Article  Google Scholar 

  49. Yan, B.R., Wang, G.Z., Xuan, F.Z., Tu, S.T.: Establishment of unified correlation of in-plain and out-of-plain constraints with ductile fracture toughness of steel. Appl. Mech. Mater. 853, 22–27 (2016)

    Article  Google Scholar 

  50. Mu, M.Y., Wang, G.Z., Xuan, F.Z., Tu, S.T.: Unified parameter of in-plane and out-of-plane constraint effects and its correlation with brittle fracture toughness of steel. Int. J. Fract. 190, 87–98 (2014)

    Article  Google Scholar 

  51. Mu, M.Y., Wang, G.Z., Xuan, F.Z., Tu, S.T.: Unified correlation of wide range of in-plane and out-of-plane constraints with cleavage fracture toughness. Theor. Appl. Fract. Mech. 80, 121–132 (2015)

    Article  Google Scholar 

  52. Roychoudhury, S., Dodds, R.H.: A numerical investigation of 3-D small-scale yielding fatigue crack growth. Eng. Fract. Mech. 70, 2363–2383 (2003)

    Article  Google Scholar 

  53. Kudari, S.K., Kodancha, K.G.: 3D finite element analysis on crack-tip plastic zone. Int. J. Eng. Sci. Technol. 2, 47–58 (2010)

    Article  Google Scholar 

  54. Jensen, H.M.: Three dimensional finite element calculations of crack tip plastic zones and K\(_{IC}\) specimen size requirements. ECF15, Stockolm (2013)

  55. Parks, D.M., Wang, Y.Y.: Elastic-plastic analysis of part-through surface cracks. Anal. Num. Exp. Asp. Three Dimens. Fract. Process. 8, 19–32 (1988)

    Google Scholar 

  56. Nakamura, T., Parks, D.M.: Three-dimensional crack front fields in a thin ductile plate. J. Mech. Phys. Solids 38, 787–812 (1990)

    Article  Google Scholar 

  57. Faleskog, J.: Effects of local constraint along three-dimensional crack fronts—a numerical and experimental investigation. J. Mech. Phys. Solids 43, 447–493 (1995)

    Article  Google Scholar 

  58. Yuan, H., Brocks, W.: Quantification of constraint effects in elastic–plastic crack front fields. J. Mech. Phys. Solids 46, 219–241 (1998)

    Article  MATH  Google Scholar 

  59. Huber, M.T.: Właściwa praca odkształcenia jako miara wytȩżenia materiału. Przyczynek do podstaw wytorymalosci. Czas. Tech. 22, 34–81 (1904). (in Polish)

  60. Mises, R.: Mechanics of solids in plastic state. Gött. Nachr. Math. Phys. 4, 582–592 (1913). (in German)

    Google Scholar 

  61. Hencky, H.: On the theory of plastic deformations. Z. Angew. Math. Mech. 4, 323–334 (1924). (in German)

    Article  Google Scholar 

  62. yIrwin, G.R., Tada, H., Paris, P.C.: The stress analysis of cracks handbook. American Society of Mechanical Engineers. Three-Park Avenue, New York, NY, vol. 10016 (2000)

  63. Lai, M.O., Ferguson, W.G.: Effect of specimen thickness on fracture toughness. Eng. Fract. Mech. 23, 649–659 (1986)

    Article  Google Scholar 

  64. Norman, T.L., Vashishth, D., Burr, D.B.: Fracture toughness of human bone under tension. J. Biomech. 28, 309–320 (1995)

    Article  Google Scholar 

  65. Zeng, Y.P., Zhu, P.Y., Tong, K.: Effect of microstructure on the low temperature toughness of high strength pipeline steels. Int. J. Min. Met. Mater. 22, 254–261 (2015)

    Article  Google Scholar 

  66. ASTM E 1921-97. Standard test method for determination of reference temperature, T0, for ferritic steels in the transition range. Annual Book of ASTM Standard, vol 3.01, West Conshohocken, PA (1998)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos.11772245, 11472205), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2014K10-16) and the Fundamental Research Funds for the Central Universities in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Yu, L., Du, W. et al. Theoretical approach of characterizing the crack-tip constraint effects associated with material’s fracture toughness. Arch Appl Mech 88, 1637–1656 (2018). https://doi.org/10.1007/s00419-018-1392-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1392-8

Keywords

Navigation