Skip to main content
Log in

Identification of joint dynamics in lap joints

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The dynamics of machine tools are greatly dependent on joints, since they add flexibility and damping to structures. In this study, the linear stiffness and damping of a joint in the transverse direction are obtained using two different methods: the inverse receptance coupling method and the new analytical joint identification (AJI) approach. The former approach finds the joint frequency response function by determining the difference between the response of the assembled structure and those of the substructures. However, the only required data for the AJI method are modal parameters of the assembled structure, which can be measured using experimental modal analysis. The accuracy of these methods is first investigated using numerical simulations. Experiments are then conducted on a structure consisting of two beams attached to one another in a lap joint. The proposed methods are utilized to experimentally extract the joint parameters in the transverse direction. Finally, the effects of varying the joint conditions, including surface roughness and the addition of interfacial materials, are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

f :

Force

M :

Moment

F :

Force vector

x :

Displacement

\(\theta \) :

Rotation

X :

Displacement vector

H :

Frequency response function (FRF)

K :

Stiffness

C :

Damping

j :

Imaginary unit

\(\omega \) :

Frequency

G :

FRF of the assembled structure

E :

Modulus of elasticity

I :

Moment of inertia

m :

Mass per length

W :

Transverse displacement of the beam

\(\omega _n \) :

Natural frequency

\(\zeta \) :

Damping ratio

Q :

Shearing force

\(\varDelta _x \) :

Distance between the measurement point and reference point

\(\varDelta _f \) :

Distance between the impact point and reference point

\(\alpha _0 \) :

The rotation of reference point

References

  1. Ratcliffe, M.J., Lieven, N.A.J.: A generic element-based method for joint identification. Mech. Syst. Signal Process. 14, 3–28 (2000)

    Article  Google Scholar 

  2. Bograd, S., Reuss, P., Schmidt, A., Gaul, L., Mayer, M.: Modeling the dynamics of mechanical joints. Mech. Syst. Signal Process. 25, 2801–2826 (2011)

    Article  Google Scholar 

  3. Yang, T., Fan, S.H., Lin, C.S.: Joint stiffness identification using FRF measurements. Comput. Struct. 81, 2549–2556 (2003)

    Article  Google Scholar 

  4. Lee, D.H., Hwang, W.S.: An identification method for joint structural parameters using an FRF-based substructuring method and an optimization technique. J. Mech. Sci. Technol. 21, 2011–2022 (2007)

    Article  Google Scholar 

  5. Yang, K.T., Park, Y.: Joint structural parameter identification using a subset of frequency response function measurements. Mech. Syst. Signal Process. 7, 509–530 (1993)

    Article  Google Scholar 

  6. Tsai, J.S., Chou, Y.F.: The identification of dynamic characteristics of a single bolt joint. Sound Vib. 125, 487–502 (1988)

    Article  Google Scholar 

  7. Hu, F., Wu, B., Hu, Y., Shi, T.: Identification of dynamic stiffness matrix of bearing joint region. Front. Mech. Eng. China. 4, 289–299 (2009)

    Article  Google Scholar 

  8. Hong, S.W., Lee, C.W.: Identification of linearised joint structural parameters by combined use of measured and computed frequency responses. Mech. Syst. Signal Process. 5, 267–277 (1991)

    Article  Google Scholar 

  9. Erturk, A., Ozguven, H.N., Budak, E.: Analytical modeling of spindle-tool dynamics on machine tools using Timoshenko beam model and receptance coupling for the prediction of tool point FRF. Int. J. Mach. Tools Manuf. 46, 1901–1912 (2006)

    Article  Google Scholar 

  10. Konowalski, K.: Experimental research and modeling of normal contact stiffness and contact damping of machined joint surfaces. Adv. Manuf. Sci. Technol. 33, 53–68 (2009)

    Google Scholar 

  11. Shi, X., Polycarpou, A.A.: Measurement and modeling of normal contact stiffness and contact damping at the meso scale. Int. J. Acoust. Vib. 127, 52–60 (2005)

    Article  Google Scholar 

  12. Eriten, M., Lee, C.H., Polycarpou, A.A.: Measurements of tangential stiffness and damping of mechanical joints: direct versus indirect contact resonance methods. Tribol. Int. 50, 35–44 (2012)

    Article  Google Scholar 

  13. Eriten, M., Polycarpou, A.A., Bergman, L.A.: Development of a lap joint fretting apparatus. Exp. Mech. 51, 1405–1419 (2011)

    Article  Google Scholar 

  14. Gaul, L., Lenz, J.: Nonlinear dynamics of structures assembled by bolted joints. Acta Mech. 125, 169–181 (1997)

    Article  MATH  Google Scholar 

  15. Menq, C.H.: Modeling and vibration analysis of friction joints. ASME. J. Vib. Acoust. 111, 71–76 (1989)

    Article  Google Scholar 

  16. Cigeroglu, E., Lu, W., Menq, C.H.: One-dimensional dynamic microslip friction model. Sound Vib. 292, 881–898 (2006)

    Article  Google Scholar 

  17. Csaba, G.: Forced response analysis in time and frequency domains of a tuned bladed disk with friction dampers. Sound Vib. 214, 395–412 (1998)

    Article  Google Scholar 

  18. Asadi, K., Ahmadian, H., Jalali, H.: Micro/macro-slip damping in beams with frictional contact interface. Sound Vib. 331, 4704–4712 (2012)

    Article  Google Scholar 

  19. Shamoto, E., Hashimoto, Y., Shinagawa, M., Sencer, B.: Analytical prediction of contact stiffness and friction damping in bolted connection. CIRP Ann. Manuf. Technol. 63, 353–356 (2014)

    Article  Google Scholar 

  20. Sanliturk, K.Y., Cakar, O.: A new method for noise elimination from measured frequency response functions. Mech. Syst. Signal Process. 19, 615–631 (2005)

    Article  Google Scholar 

  21. Pickrel, C.R.: Estimating the rank of measured response data using SVD and principal response functions. In: Proceedings of the 2nd International Conference on Structural Dynamics Modeling, Test Analysis and Correlation DTA/NAFEMS, pp. 89–100 (1996)

  22. Cakar, O., Sanliturk, K.Y.: Elimination of noise and transducer effects from measured response data. In: Proceedings of ESDA2002 conference: 6th Biennial Conference on Engineering Systems Design and Analysis, Istanbul, Turkey, APM055 (2002)

  23. Juang, J.N., Pappa, R.S.: Effects of noise on modal parameters identified by the eigensystem realization algorithm. J. Guid. Control Dyn. 9, 294–303 (1986)

    Article  Google Scholar 

  24. Allemang, R.J., Brown, D.L.: A unified matrix polynomial approach to modal identification. Sound Vib. 211, 301–322 (1998)

    Article  MATH  Google Scholar 

  25. Ewins, D.J.: Modal Testing: Theory, Practice and Applications. Research Studies Press, Baldock (2000)

    Google Scholar 

  26. Braun, S., Ram, Y.M.: Structural parameter identification in the frequency domain: the use of over-determined systems. J. Dyn. Syst. Meas. Control ASME 109, 120–123 (1987)

    Article  MATH  Google Scholar 

  27. Bao, X.X., Li, C.L., Xiong, C.B.: Noise elimination algorithm for modal analysis. Appl. Phys. Lett. 107, 041901 (2015)

    Article  Google Scholar 

  28. Hu, S.L., Bao, X., Li, H.: Model order determination and noise removal for modal parameter estimation. Mech. Syst. Signal Process. 24, 1605–1620 (2010)

    Article  Google Scholar 

  29. Celic, D., Boltezar, M.: Identification of the dynamic properties of joints using frequency-response functions. Sound Vib. 317, 158–174 (2008)

    Article  Google Scholar 

  30. Park, S.S., Chae, J.: Joint identification of modular tools using a novel receptance coupling method. Int. J. Adv. Manuf. Technol. 35, 1251–1262 (2008)

    Article  Google Scholar 

  31. Thomson, W.: Theory of Vibration with Applications. CRC Press, Boca Raton (1996)

    Google Scholar 

  32. Guo, T., Li, L., Cai, L., Zhao, Y.: Alternative method for identification of the dynamic properties of bolted joints. J. Mech. Sci. Technol. 26, 3017–3027 (2012)

    Article  Google Scholar 

  33. Fu, Z.F., He, J.: Modal Analysis. Butterworth-Heinemann, Oxford (2001)

    Google Scholar 

  34. Gaul, L., Nitsche, R.: The role of friction in mechanical joints. Appl. Mech. Rev. 54, 93–106 (2001)

    Article  Google Scholar 

  35. Beards, C.F.: Damping in structural joints. Shock Vib. Inf. Cent. Shock Vib. Dig. 14, 9–11 (1982)

    Google Scholar 

  36. Elliott, A.S., Moorhouse, A.T., Pavic, G.: Moment excitation and the measurement of moment mobilities. Sound Vib. 331, 2499–2519 (2012)

    Article  Google Scholar 

  37. Ouyang, H., Oldfield, M.J., Mottershead, J.E.: Experimental and theoretical studies of a bolted joint excited by a torsional dynamic load. Int. J. Mech. Sci. 48, 1447–1455 (2006)

    Article  Google Scholar 

  38. Mehrpouya, M., Graham, E., Park, S.S.: FRF based joint dynamics modeling and identification. Mech. Syst. Signal Process. 39, 265–279 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge NSERC Canadian Network for Research in Machining Technology (CANRIMT) for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanati, M., Alammari, Y., Ko, J.H. et al. Identification of joint dynamics in lap joints. Arch Appl Mech 87, 99–113 (2017). https://doi.org/10.1007/s00419-016-1179-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1179-8

Keywords

Navigation