Skip to main content
Log in

Vibration analysis and active control for frame structures with piezoelectric rods using spectral element method

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The dynamic responses and vibration suppression of frame structures considering the shear deformation are investigated using the spectral element method (SEM). Vibration suppression of the frame structures is studied through the active control technique using the piezoelectric rods. The local dynamic stiffness matrices of the spectral elements for the Timoshenko beams and longitudinal vibration of the rods are obtained in the Fourier phase space and that for the axial-bending-shear coupled vibration of the piezoelectric rod is also gotten. From the transformation between the local and global coordinates, the global dynamic stiffness matrix for the whole frame structures containing the piezoelectric rods is obtained. From the numerical simulation, the dynamic responses of the frame structures can be effectively and exactly calculated by the SEM comparing with the finite element method. It can be found that the dynamic responses of the frame structures can be effectively suppressed by the active control technique based on the piezoelectric rods. The influences of the structural parameters on the dynamic responses and active control effect are also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doyle J.: A spectrally formulated finite element for longitudinal wave propagation. Int. J. Anal. Exp. Modal Anal. 3, 1–5 (1988)

    MathSciNet  Google Scholar 

  2. Doyle J.: Wave Propagation in Structures. Springer, New York (1989)

    Book  MATH  Google Scholar 

  3. Lee U.: Spectral Element Method in Structural Dynamics. Wiley, Singapore (2009)

    Book  MATH  Google Scholar 

  4. Banerjee J., Williams F.: An exact dynamic stiffness matrix for coupled extensional–torsional vibration of structural members. Comput. Struct. 50, 161–166 (1994)

    Article  MATH  Google Scholar 

  5. Eisenberger M., Abramovich H., Shulepov O.: Dynamic stiffness analysis of laminated beams using a first order shear deformation theory. Compos. Struct. 31, 265–271 (1995)

    Article  Google Scholar 

  6. Lee U., Kim J.: Dynamic continuum modeling of truss-type space structures using spectral elements. J. Spacecr. Rockets 33, 404–409 (1996)

    Article  Google Scholar 

  7. Lee U.: Equivalent continuum representation of lattice beams: spectral element approach. Eng. Struct. 20(7), 587–592 (1998)

    Article  Google Scholar 

  8. Mahapatra D.: Spectral-element-based solutions for wave propagation analysis of multiply connected un-symmetric laminated composite beams. J. Sound Vib. 237, 819–836 (2000)

    Article  Google Scholar 

  9. Chakraborty A., Gopalakrishnan S.: A spectrally formulated finite element for wave propagation analysis in functionally graded beams. Int. J. Solids Struct. 40, 2421–2448 (2003)

    Article  MATH  Google Scholar 

  10. Banerjee J., Williams F.: Exact Bernoulli–Euler dynamic stiffness matrix for a range of tapered beams. Int. J. Numer. Methods Eng. 21, 2289–2302 (2005)

    Article  Google Scholar 

  11. Park I., Lee U.: Dynamic analysis of smart composite beams by using the frequency-domain spectral element method. J. Mech. Sci. Technol. 26, 2511–2521 (2012)

    Article  Google Scholar 

  12. Jang I., Lee U.: Spectral element analysis of the axial-bending-shear coupled vibrations of composite Timoshenko beams. J. Compos. Mater. 46, 2811–2828 (2012)

    Article  Google Scholar 

  13. Lee U., Lee C.: Spectral element modeling for extended Timoshenko beams. J. Sound Vib. 319, 993–1002 (2009)

    Article  Google Scholar 

  14. Wu Z.J., Li F.M., Wang Y.Z.: Study on vibration characteristics in periodic plate structures using the spectral element method. Acta Mech. 224, 1089–1101 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lee U., Kim J.: Dynamics of elastic-piezoelectric two-layer beams using spectral element method. Int. J. Solids Struct. 37(32), 4403–4417 (2000)

    Article  MATH  Google Scholar 

  16. Lee U., Kim J.: Spectral element modeling for the beams treated with active constraining layer damping. Int. J. Solids Struct. 38, 5679–5702 (2001)

    Article  MATH  Google Scholar 

  17. Park H.W., Kim E.J., Lim K.L., Sohn H.: Spectral element formulation for dynamic analysis of a coupled piezoelectric wafer and beam system. Comput. Struct. 88, 567–580 (2010)

    Article  Google Scholar 

  18. Lee U., Kim D., Park I.: Dynamic modeling and analysis of the PZT-bonded composite Timoshenko beams: spectral element method. J. Sound Vib. 332, 1585–1609 (2013)

    Article  Google Scholar 

  19. Su X.Y., Pao Y.H.: Normal mode, ray and hybrid analysis for transient waves in a finite beam. J. Sound Vib. 151, 351–368 (1992)

    Article  Google Scholar 

  20. Guo Y.Q., Chen W.Q., Pao Y.H.: Dynamic analysis of space frame: the method of reverberation-ray matrix and orthogonality of normal modes. J. Sound Vib. 317, 716–738 (2008)

    Article  Google Scholar 

  21. Li, F.M., Kishimoto, K., Wang, Y.S., Chen, Z.B., Huang W.H.: Vibration control of beams with active constrained layer damping. Smart Mater. Struct. 17, 065036 (2008) (9 pp)

  22. Li F.M., Song Z.G., Chen ZB.: Active vibration control of conical shells using piezoelectric materials. J. Vib. Control 18(14), 2234–2256 (2012)

    Article  MathSciNet  Google Scholar 

  23. Liu C.C., Li F.M., Huang WH.: The active vibration control of finite L-shaped beam with travelling wave approach. Acta Mech. Solida Sin. 23(5), 377–385 (2010)

    Article  Google Scholar 

  24. Cai C., Zheng H., Chung K., Zhang ZJ.: Vibration analysis of a beam with an active constraining layer damping patch. Smart Mater. Struct. 15, 147–156 (2006)

    Article  Google Scholar 

  25. Pan X., Hansen CH.: Active control of vibratory power transmission along a semi-infinite plate. J. Sound Vib. 184, 585–610 (1995)

    Article  MATH  Google Scholar 

  26. Bai M.R., Lin GM.: The development of a DSP-based active small amplitude vibration control system for flexible beams by using the LQG algorithms and intelligent materials. J. Sound Vib. 198, 411–427 (1996)

    Article  Google Scholar 

  27. Gao W., Chen J.J., Ma H.B., Ma XS.: Optimal placement of active bars in active vibration control for piezoelectric intelligent truss structures with random parameters. Comput. Struct. 81, 53–60 (2003)

    Article  MathSciNet  Google Scholar 

  28. Wang C.Y., Vaicaitis R.: Active control of vibrations and noise of double wall cylindrical shells. J. Sound Vib. 216, 865–888 (1998)

    Article  Google Scholar 

  29. Narayanan S., Balamurugan V.: Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators. J. Sound Vib. 262, 529–562 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng-Ming Li or Chun-Chuan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, FM., Liu, CC. Vibration analysis and active control for frame structures with piezoelectric rods using spectral element method. Arch Appl Mech 85, 675–690 (2015). https://doi.org/10.1007/s00419-014-0980-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0980-5

Keywords

Navigation