Skip to main content
Log in

Mapping of estradiol binding sites through receptor micro-autoradiography in the endometrial stroma of early pregnant mice

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Estradiol triggers key biological responses in the endometrium, which rely on the presence and levels of its cognate receptors on target cells. Employing the receptor micro-autoradiography (RMAR) technique, we aimed to provide a temporal and spatial map of the functional binding sites for estradiol in the mouse endometrial stroma during early pregnancy. Uterine samples from days 1.5 to 7.5 of pregnancy were collected 1 h after tritiated- (3H-) estradiol administration and prepared for RMAR analysis. Autoradiographic incorporation of 3H-thymidine (after 1-h pulse) was evaluated over the same gestational interval. Combined RMAR with either histochemistry with Dolichus biflorus (DBA) lectin or immunohistochemistry for detection of the desmin further characterized 3H-estradiol binding pattern in uterine Natural Killer (uNK) and decidual cells, respectively. 3H-estradiol binding levels oscillated in the pregnant endometrial stroma between the mesometrial and antimesometrial regions as well as the superficial and deep domains. Although most of the endometrial stromal cells retained the hormone, a sub-population of them, as well as endothelial and uNK cells, were unable to do so. Rises in the levels of 3H-estradiol binding preceded endometrial stromal cell proliferation. 3H-estradiol binding and 3H-thymidine incorporation progressively decreased along the development of the antimesometrial decidua. Endothelial proliferation occurred regardless of 3H-estradiol binding, whereas pericytes proliferation was associated with high levels of hormone binding. Endometrial cell populations autonomously control their levels of 3H-estradiol binding and retention, a process associated with their proliferative competence. Collectively, our results illustrate the intricate regulatory dynamic of nuclear estrogen receptors in the pregnant mouse endometrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abrahamsohn PA (1983) Ultrastructural study of the mouse antimesometrial decidua. Anat Embryol 166(2):263–274

    Article  CAS  PubMed  Google Scholar 

  • Abrahamsohn PA, Zorn TMT (1993) Implantation and decidualization in rodents. J Exp Zool 266:603–628

    Article  CAS  PubMed  Google Scholar 

  • Adams NR, DeMayo FJ (2015) The role of steroid hormone receptors in the establishment of pregnancy in rodents. Adv Anat Embryol Cell Biol 216:27–49

    Article  PubMed  Google Scholar 

  • Betsholtz C, Limdblom P, Gerharddt H (2005) Role of pericytes in vascular morphogenesis. In: Clauss M, Breier G (eds) Mechanisms of angiogenesis. Birkhäuser Verlag, Basel, pp 115–125

  • Binder AK, Winuthayanon W, Hewitt SC, Couse JF, Korach KS (2015) Steroid receptors in the uterus and ovary. In: Plant TM, Zeleznik AJ (eds) Knobil and Neill’s physiology of reproduction, 4th edn. Elsevier, San Francisco, pp 1099–1193

    Chapter  Google Scholar 

  • Borzychowski AM, Chantakru S, Minhas K, Paffaro VA, Yamada AT, He H, Korach KS, Croy BA (2003) Functional analysis of murine uterine natural killer cells genetically devoid of oestrogen receptors. Placenta 24(4):403–4 11

    Google Scholar 

  • Cao M, Chan RW, Yeung WS (2015) Label-retaining stromal cells in mouse endometrium awaken for expansion and repair after parturition. Stem Cells Dev 24(6):768–780

    Article  CAS  PubMed  Google Scholar 

  • Chambliss KL, Wu Q, Oltmann S et al (2010) Non-nuclear estrogen receptor alpha signaling promotes cardiovascular protection but not uterine or breast cancer growth in mice. J Clin Invest 120(7):2319–2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan RW, Gargett CE (2006) Identification of label-retaining cells in mouse endometrium. Stem Cells 24(6):1529–1538

    Article  CAS  PubMed  Google Scholar 

  • Coppens MT, Dhont MA, De Boever JG, Serreyn RF, Vandekerckhove DA, Roels HJ (1993) The distribution of oestrogen and progesterone receptors in the human endometrial basal and functional layer during the normal menstrual cycle. An immunocytoche mical study. Histochemistry 99(2):121–126

    Article  CAS  PubMed  Google Scholar 

  • Critchley HO, Brenner RM, Henderson TA, Williams K, Nayak NR, Slayden OD, Miller MR, Saunders PT (2001) Estrogen receptor β, but not estrogen receptor α, is present in the vascular endothelium of the human and nonhuman primate endometrium. J Clin Endocrinol Metab 86:1370–1378

    CAS  PubMed  Google Scholar 

  • Croy AB, He H, Esadeg S et al (2003) Uterine natural killer cells: insights into their cellular and molecular biology from mouse modelling. Reproduction 126:149–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das A, Mantena SR, Kannan A, Evans DB, Bagchi MK, Bagchi IC (2009) De novo synthesis of estrogen in pregnant uterus is critical for stromal decidualization and angiogenesis. Proc Natl Acad Sci USA 106(30):12542–12547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Hertogh R, Ekka E, Vanderheyden I, Glorieux B (1986) Estrogen and progestogen receptors in the implantation sites and interembryonic segments of rat uterus endometrium and myometrium. Endocrinology 119:680–684

    Article  PubMed  Google Scholar 

  • De M, Choudhuri R, Wood GW (1991) Determination of the number and distribution of macrophages, lymphocytes and granulocytes in the mouse uterus from mating through implantation. J Leuk Biol 50:252–262

    CAS  Google Scholar 

  • Dey SK, Lim H, Das SK, Reese J, Paria BC, Daikoku T, Wang H (2004) Molecular cues to implantation. Endocr Rev 25(3):341–373

    Article  CAS  PubMed  Google Scholar 

  • Erlebacher A (2014) Leukocyte Population Dynamics and Functions at the Maternal–Fetal Interface. In: Croy A, Yamada AT, DeMayo F, Adamson S (eds) The guide to investigation of mouse pregnancy, 1th edn. Elsevier, Boston, pp 227–242

    Chapter  Google Scholar 

  • Favaro R, Abrahamsohn P, Zorn T (2014) Decidualization and endometrial extracellular matrix remodeling. In: Croy A, Yamada AT, DeMayo F, Adamson S (eds) The guide to investigation of mouse pregnancy, 1th edn. Elsevier, Boston, pp 125–142

    Chapter  Google Scholar 

  • Gao F, Bian F, Ma X, Kalinichenko VV, Das SK (2015) Control of regional decidualization in implantation: Role of FoxM1 downstream of Hoxa10 and cyclin D3. Sci Rep 5:​13863. doi:10.1038/srep13863

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson DA, McInnes KJ, Critchley HO, Saunders PT (2013) Endometrial Intracrinology—generation of an estrogen-dominated microenvironment in the secretory phase of women. J Clin Endocrinol Metab 98(11):E1802–1806

    Article  CAS  PubMed  Google Scholar 

  • Gibson DA, Greaves E, Critchley HO, Saunders PT (2015) Estrogen-dependent regulation of human uterine natural killer cells promotes vascular remodelling via secretion of CCL2. Hum Reprod 30(6):1290–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greaves E, Collins F, Critchley HO, Saunders PT (2013) ERβ-dependent effects on uterine endothelial cells are cell specific and mediated via Sp1. Hum Reprod 28(9):2490–2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greca CP, Abrahamsohn PA, Zorn TM (1998) Ultrastructural cytochemical study of proteoglycans in the endometrium of pregnant mice using cationic dyes. Tissue Cell 30(3):304–311

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Wang W, Li SJ, Han YS, Zhang L, Zhang XM, Liu JX, Yue ZP (2012) Differential expression and regulation of angiopoietin-2 in mouse uterus during preimplantation period. Anat Rec 295(2):338–346

    Article  CAS  Google Scholar 

  • Henderson TA, Saunders PT, Moffett-King A, Groome NP, Critchley HO (2003) Steroid receptor expression in uterine natural killer cells. J Clin Endocrinol Metab 88:440–449

    Article  CAS  PubMed  Google Scholar 

  • Herington JL, Bany BM (2007) Effect of the conceptus on uterine natural killer cell numbers and function in the mouse uterus during decidualization. Biol Reprod 76(4):579–588

    Article  CAS  PubMed  Google Scholar 

  • Heryanto B, Rogers PA (2002) Regulation of endometrial endothelial cell proliferation by oestrogen and progesterone in the ovariectomized mouse. Reprod 123(1):107–113

    Article  Google Scholar 

  • Hewitt SC, Deroo BJ, Hansen K, Collins J, Grissom S, Afshari CA, Korach KS (2003) Estrogen receptor-dependent genomic responses in the uterus mirror the biphasic physiological response to estrogen. Mol Endocrinol 17(10):2070–2083

    Article  CAS  PubMed  Google Scholar 

  • Hewitt SC, Li L, Grimm SA, Chen Y, Liu L, Li Y, Bushel PR, Fargo D, Korach KS (2012) Research resource: whole-genome estrogen receptor α binding in mouse uterine tissue revealed by ChIP-seq. Mol Endocrinol 26(5):887–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinfeld RG, O’Shea JD (1983) Spatial and temporal patterns of eoxyribonucleic acid synthesis and mitosis in the endometrial stroma during decidualization in the pseudopregnant rat. Biol Reprod 28(3):691–702

    Article  CAS  PubMed  Google Scholar 

  • Lindberg MK, Weihua Z, ersson N et al (2002) Estrogen receptor specificity for the effects of estrogen in ovariectomized mice. J Endocrinol 174(2):167–178

    Article  CAS  PubMed  Google Scholar 

  • Ma WG, Song H, Das SK, Paria BC, Dey SK (2003) Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc Natl Acad Sci USA 100(5):2963–2968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martel D, Psychoyos A (1981) Estrogen receptors in the nidatory sites of the rat endometrium. Science 211:1454–1455

    Article  CAS  PubMed  Google Scholar 

  • Moggs JG, Tinwell H, Spurway T (2004) Phenotypic anchoring of gene expression changes during estrogen-induced uterine growth. Environ Health Perspect 112(16):1589–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moulton BC, Koenig BB (1981) Estrogen receptor in deciduoma cells separated by velocity sedimentation. Endocrinology 108:484–488

    Article  CAS  PubMed  Google Scholar 

  • Oliveira SF, Abrahamsohn PA, Nagata T, Zorn TMT (1995) Incorporation of 3H-amino acids by endometrial estromal cells during decidualization in the mouse. A radioautographical study. Cell Mol Biol 42(1):107–116

    Google Scholar 

  • Oliveira SF, Abrahamsohn PA, Zorn TMT (1998) Radioautography revels regional metabolic differences in the pregnant endometrium of the mice. Braz J Biol Med Res 31(2):307–312

    Article  CAS  Google Scholar 

  • Oliveira SF, Greca CP, Abrahamsohn PA, Reis MG, Zorn TM (2000) Organization of desmin-containing intermediate filaments during differentiation of mouse decidual cells. Histochem Cell Biol 113(4):319–327

    Article  CAS  PubMed  Google Scholar 

  • Paffaro VA, Bizinotto MC, Joazeiro PP, Yamada AT (2003) Subset classification of mouse uterine natural killer cells by DBA lectin reactivity. Placenta 24(5):479–488

    Article  CAS  PubMed  Google Scholar 

  • Perrot-Applanat M, Deng M, Fernandez H, Lelaidier C, Meduri G, Bouchard P (1994) Immunohistochemical localization of estradiol and progesterone receptors in human uterus throughout pregnancy: expression in endometrial blood vessels. J Clin Endocrinol Metab 78(1):216–224

    CAS  PubMed  Google Scholar 

  • Salgado RM, Favaro RR, Martin SS, Zorn TM (2009a) The estrous cycle modulates small leucine-rich proteoglycans expression in mouse uterine tissues. Anat Rec 292(1):138–153

    Article  CAS  Google Scholar 

  • Salgado RM, Capelo LP, Favaro RR, Glazier JD, Aplin JD, Zorn TM (2009b) Hormone-regulated expression and distribution of versican in mouse uterine tissues. Reprod Biol Endocrinol 7:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Salgado RM, Favaro RR, Zorn TMT (2011) Modulation of small leucine-rich proteoglycans (SLRPs) expression in the mouse uterus by estradiol and progesterone. Reprod Biol Endocrinol 9:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salgado RM, Covarrubias AC, Favaro RR, Serrano-Nascimento C, Nunes MT, Zorn TM (2013) Estradiol induces transcriptional and posttranscriptional modifications in versican expression in the mouse uterus. J Mol Histol 44:221–229

    Article  CAS  PubMed  Google Scholar 

  • Sartor P (1977) Exogenous hormone uptake and retention in the rat uterus at the time of ova-implantation. Acta Endocrinol 84:804–812

    CAS  PubMed  Google Scholar 

  • Stumpf WE (1968) Subcellular distribution of 3H-estradiol in rat uterus by quantitative autoradiography—a comparison between 3H-estradiol and 3H-norethynodrel. Endocrinology 83(4):777–782

    Article  CAS  PubMed  Google Scholar 

  • Stumpf WE (1971) Autoradioautographic techniques for the localization of hormones and drugs at the cellular and subcellular levels. Acta Endocr 153:205–222

    CAS  Google Scholar 

  • Stumpf WE (1999) Localizing estradiol and other diffusible hormones and drugs by autoradiography and immunocytochemistry. Histochem Cell Biol 111:83–84

    Article  CAS  PubMed  Google Scholar 

  • Stumpf WE (2003) Drug localization in tissues and cells. NC7 IDDC-Press, Chapel Hill

    Google Scholar 

  • Stumpf WE (2012) Drugs in the brain-cellular imaging with receptor microscopic autoradiography. Prog Histochem Cytochem 47(1):1–26

    Article  PubMed  Google Scholar 

  • Stumpf WE, Roth LJ (1966) High resolution autoradiography with dry mounted, freeze-dried frozen sections. Comparative study of six methods using two diffusible compounds 3H-estradiol and 3H-mesobilirubinogen. J Histochem Cytochem 14(3):274–287

    Article  CAS  PubMed  Google Scholar 

  • Stumpf WE, Sar M, Zuber TJ, Soini E, Tuohimaa P (1981) Quantitative assessment of steroid hormone binding sites by thaw-mount autoradiography. J Histochem Cytochem 29:201–206

    Article  CAS  Google Scholar 

  • Tan J, Paria BC, Dey SK, Das SK (1999) Differential uterine expression of estrogen and progesterone receptors correlates with uterine preparation for implantation and decidualization in the mouse. Endocrinology 140(11):5310–5321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tessier C, Deb S, Prignent-Tessier A, Ferguson-Gottschall S, Gibori GB, Shiu RPC, Gibori G (2000) Estrogen receptors alfa and beta in rat decidual cells: cell-specific expression and differential regulation by steroid hormones and prolactin. Endocrinology 141(10):3842–3851

    Article  CAS  PubMed  Google Scholar 

  • Tibbetts T, Mendoza-Meneses M, O’Malley B, Conneely O (1998) Mutual and intercompartmental regulation of estrogen receptor and progesterone receptor expression in the mouse uterus. Biol Reprod 59:1143–1152

    Article  CAS  PubMed  Google Scholar 

  • Wada-Hiraike O, Hiraike H, Okinaga H et al (2006) Role o f estrogen receptor beta in uterine stroma and epithelium: Insights from estrogen receptor beta−/− mice. Proc Natl Acad Sci USA 103(48):18350–18355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter LM, Rogers PAW, Girling JE (2005) The role of progesterone in endometrial angiogenesis in pregnant and ovariectomised mice. Reproduction 129(6):765–777

    Article  CAS  PubMed  Google Scholar 

  • Walter LM, Rogers PA, Girling JE (2010) Vascular endothelial growth factor-A isoform and (co)receptor expression are differentially regulated by 17beta-oestradiol in the ovariectomized mouse uterus. Reproduction 140(2):331–341

    Article  CAS  PubMed  Google Scholar 

  • Ward WF, Frost AG, Orsini MW (1978) Estrogen binding by embryonic and interembryonic segments of the rat uterus prior to implantation. Biol Reprod 18(4):598–601

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Chambliss K, Umetani M, Mineo C, Shaul PW (2011) Non-nuclear estrogen receptor signaling in the endothelium. J Biol Chem 286(17):14737–14743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorn TMT, Pinhal MAS, Nader HB, Carvalho JJ, Abrahamsohn PA, Dietrich CP (1995) Biosynthesis of glycosaminoglycans in the endometrium during the initial stages of pregnancy of the mouse. Cell Mol Biol 41:97–106

    CAS  PubMed  Google Scholar 

  • Zorn TMT, Soto-Suazo M, Pellegrini CR, Oliveira JG, Stumpf WE (2003) Estradiol receptor binding to the epithelium of uterine lumen and glands: region- and time-related changes during preimplantation and periimplantation periods studied by autoradiography. Histochem Cell Biol 120:1–12

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mrs. Cleusa Pellegrini for her enormous and precious support in the preparation of the samples for autoradiographic analysis. Grants (99/00098-1 and 99/00097-5; TMTZ) were provided by São Paulo Research Foundation-FAPESP. Fellowships were provided by FAPESP (11/22429-3; RRF) and by Coordination for the Improvement of Higher Education Personnel—CAPES (20131525; RRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Telma M. T. Zorn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is dedicated to Professor Walter E. Stumpf in memoriam for his valuable contributions to the localization and mechanisms of action of hormones and drugs on tissues, particularly through the development of autoradioautographic approaches, and also for his generosity to share his knowledge with the scientific community.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zorn, T.M.T., Favaro, R.R., Soto-Suazo, M. et al. Mapping of estradiol binding sites through receptor micro-autoradiography in the endometrial stroma of early pregnant mice. Histochem Cell Biol 148, 257–272 (2017). https://doi.org/10.1007/s00418-017-1568-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-017-1568-2

Keywords

Navigation