Skip to main content
Log in

IgG trafficking in the adult pig small intestine: one- or bidirectional transfer across the enterocyte brush border?

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Immunoglobulin G (IgG) transfer in opposite directions across the small intestinal brush border serves different purposes in early life and in adulthood. In the neonate, maternal IgG is taken up from the gut lumen into the blood, conferring passive immunity to the offspring, whereas in the adult immunoglobulins, including IgG made by plasma cells in the lamina propria, are secreted via the brush border to the lumen as part of the mucosal defense. Here, IgG has been proposed to perform a luminal immune surveillance which eventually includes a reuptake through the brush border as pathogen-containing immune complexes. In the present work, we studied luminal uptake of FITC-conjugated and gold-conjugated IgG in cultured pig jejunal mucosal explants. After 1 h, binding to the brush border was seen in upper crypts and lower parts of the villi. However, no endocytotic uptake into EEA-1-positive compartments was detected, neither at neutral nor acidic pH, despite an ongoing constitutive endocytosis from the brush border, visualized by the polar tracer CF594. The 40-kDa neonatal Fc receptor, FcRn, was present in the microvillus fraction, but noteworthy, a 37 kDa band, most likely a proteolytic cleavage product, bound IgG in a pH-dependent manner more efficiently than did the full-length FcRn. In conclusion, our work does not support the theory that bidirectional transfer of IgG across the intestinal brush border is part of the luminal immune surveillance in the adult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baker K, Qiao SW, Kuo T, Kobayashi K, Yoshida M, Lencer WI, Blumberg RS (2009) Immune and non-immune functions of the (not so) neonatal Fc receptor, FcRn. Semin Immunopathol 31:223–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booth AG, Kenny AJ (1974) A rapid method for the preparation of microvilli from rabbit kidney. Biochem J 142:575–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandtzaeg P (2013) Gate-keeper function of the intestinal epithelium. Benef Microbes 4:67–82

    Article  CAS  PubMed  Google Scholar 

  • Brown WR (1978) Relationships between immunoglobulins and the intestinal epithelium. Gastroenterology 75:129–138

    CAS  PubMed  Google Scholar 

  • Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    Article  CAS  PubMed  Google Scholar 

  • Claypool SM, Dickinson BL, Wagner JS, Johansen FE, Venu N, Borawski JA, Lencer WI, Blumberg RS (2004) Bidirectional transepithelial IgG transport by a strongly polarized basolateral membrane Fcgamma-receptor. Mol Biol Cell 15:1746–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danielsen EM (1995) Involvement of detergent-insoluble complexes in the intracellular transport of intestinal brush border enzymes. Biochemistry 34:1596–1605

    Article  CAS  PubMed  Google Scholar 

  • Danielsen EM (2015) Probing endocytosis from the enterocyte brush border using fluorescent lipophilic dyes: lipid sorting at the apical cell surface. Histochem Cell Biol 143:545–556

    Article  CAS  PubMed  Google Scholar 

  • Danielsen EM, Hansen GH (2006) Lipid raft organization and function in brush borders of epithelial cells. Mol Membr Biol 23:71–79

    Article  CAS  PubMed  Google Scholar 

  • Danielsen EM, Hansen GH (2013) Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane. PLoS ONE 8:e76661

    Article  PubMed  PubMed Central  Google Scholar 

  • Danielsen EM, Hansen GH (2016) Small molecule pinocytosis and clathrin-dependent endocytosis at the intestinal brush border: two separate pathways into the enterocyte. Biochim Biophys Acta 1858:233–243

    Article  Google Scholar 

  • Danielsen EM, Sjostrom H, Noren O, Bro B, Dabelsteen E (1982) Biosynthesis of intestinal microvillar proteins. Characterization of intestinal explants in organ culture and evidence for the existence of pro-forms of the microvillar enzymes. Biochem J 202:647–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fagarasan S, Honjo T (2003) Intestinal IgA synthesis: regulation of front-line body defences. Nat Rev Immunol 3:63–72

    Article  CAS  PubMed  Google Scholar 

  • Galipeau HJ, Verdu EF (2016) The complex task of measuring intestinal permeability in basic and clinical science. Neurogastroenterol Motil 28:957–965

    Article  CAS  PubMed  Google Scholar 

  • Gill RK, Mahmood S, Sodhi CP, Nagpaul JP, Mahmood A (1999) IgG binding and expression of its receptor in rat intestine during postnatal development. Indian J Biochem Biophys 36:252–257

    CAS  PubMed  Google Scholar 

  • Glenn GM, Francis DH, Danielsen EM (2009) Toxin-mediated effects on the innate mucosal defenses: implications for enteric vaccines. Infect Immun 77:5206–5215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen GH, Sjostrom H, Noren O, Dabelsteen E (1987) Immunomicroscopic localization of aminopeptidase N in the pig enterocyte. Implications for the route of intracellular transport. Eur J Cell Biol 43:253–259

    CAS  PubMed  Google Scholar 

  • Hansen GH, Wetterberg LL, Sjostrom H, Noren O (1992) Immunogold labelling is a quantitative method as demonstrated by studies on aminopeptidase N in microvillar membrane vesicles. Histochem J 24:132–136

    Article  CAS  PubMed  Google Scholar 

  • Hansen GH, Pedersen ED, Immerdal L, Niels-Christiansen LL, Danielsen EM (2005) Anti-glycosyl antibodies in lipid rafts of the enterocyte brush border: a possible host defense against pathogens. Am J Physiol Gastrointest Liver Physiol 289:G1100–G1107

    Article  CAS  PubMed  Google Scholar 

  • Hansen GH, Niels-Christiansen LL, Immerdal L, Danielsen EM (2006) Antibodies in the small intestine: mucosal synthesis and deposition of anti-glycosyl IgA, IgM, and IgG in the enterocyte brush border. Am J Physiol Gastrointest Liver Physiol 291:G82–G90

    Article  CAS  PubMed  Google Scholar 

  • Hansen GH, Rasmussen K, Niels-Christiansen LL, Danielsen EM (2009) Endocytic trafficking from the small intestinal brush border probed with FM dye. Am J Physiol Gastrointest Liver Physiol 297:G708–G715

    Article  CAS  PubMed  Google Scholar 

  • He W, Ladinsky MS, Huey-Tubman KE, Jensen GJ, McIntosh JR, Bjorkman PJ (2008) FcRn-mediated antibody transport across epithelial cells revealed by electron tomography. Nature 455:542–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaetzel CS (2005) The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces. Immunol Rev 206:83–99

    Article  CAS  PubMed  Google Scholar 

  • Ladinsky MS, Huey-Tubman KE, Bjorkman PJ (2012) Electron tomography of late stages of FcRn-mediated antibody transcytosis in neonatal rat small intestine. Mol Biol Cell 23:2537–2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Leitner K, Ellinger I, Grill M, Brabec M, Fuchs R (2006) Efficient apical IgG recycling and apical-to-basolateral transcytosis in polarized BeWo cells overexpressing hFcRn. Placenta 27:799–811

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen US, Hansen GH, Danielsen EM (2016) Organ culture as a model system for studies on enterotoxin interactions with the intestinal epithelium. Methods Mol Biol 1396:159–166

    Article  PubMed  Google Scholar 

  • Mabbott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A (2013) Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol 6:666–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathias A, Pais B, Favre L, Benyacoub J, Corthesy B (2014) Role of secretory IgA in the mucosal sensing of commensal bacteria. Gut Microbes 5:688–695

    Article  PubMed  PubMed Central  Google Scholar 

  • McCarthy KM, Yoong Y, Simister NE (2000) Bidirectional transcytosis of IgG by the rat neonatal Fc receptor expressed in a rat kidney cell line: a system to study protein transport across epithelia. J Cell Sci 113(Pt 7):1277–1285

    CAS  PubMed  Google Scholar 

  • McCarthy KM, Lam M, Subramanian L, Shakya R, Wu Z, Newton EE, Simister NE (2001) Effects of mutations in potential phosphorylation sites on transcytosis of FcRn. J Cell Sci 114:1591–1598

    CAS  PubMed  Google Scholar 

  • Mohanty S, Kim J, Ganesan LP, Phillips GS, Robinson JM, Anderson CL (2013) Abundant intracellular IgG in enterocytes and endoderm lacking FcRn. PLoS ONE 8:e70863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostov KE (1994) Transepithelial transport of immunoglobulins. Annu Rev Immunol 12:63–84

    Article  CAS  PubMed  Google Scholar 

  • Patel JJ, Rosenthal MD, Miller KR, Martindale RG (2016) The gut in trauma. Curr Opin Crit Care 22:339–346

    Article  PubMed  Google Scholar 

  • Praetor A, Ellinger I, Hunziker W (1999) Intracellular traffic of the MHC class I-like IgG Fc receptor, FcRn, expressed in epithelial MDCK cells. J Cell Sci 112(Pt 14):2291–2299

    CAS  PubMed  Google Scholar 

  • Pyzik M, Rath T, Lencer WI, Baker K, Blumberg RS (2015) FcRn: the architect behind the immune and nonimmune functions of IgG and albumin. J Immunol 194:4595–4603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rath T, Baker K, Pyzik M, Blumberg RS (2014) Regulation of immune responses by the neonatal fc receptor and its therapeutic implications. Front Immunol 5:664

    Article  PubMed  Google Scholar 

  • Rodewald R, Kraehenbuhl JP (1984) Receptor-mediated transport of IgG. J Cell Biol 99:159s–164s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7:715–725

    Article  CAS  PubMed  Google Scholar 

  • Sandvig K, Van Deurs B (2002) Membrane traffic exploited by protein toxins. Annu Rev Cell Dev Biol 18:1–24

    Article  CAS  PubMed  Google Scholar 

  • Sandvig K, Bergan J, Kavaliauskiene S, Skotland T (2014) Lipid requirements for entry of protein toxins into cells. Prog Lipid Res 54:1–13

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  • Sjostrom H, Noren O, Danielsen EM, Skovbjerg H (1983) Structure of microvillar enzymes in different phases of their life cycles. Ciba Found Symp 95:50–72

    CAS  PubMed  Google Scholar 

  • Stapleton NM, Einarsdottir HK, Stemerding AM, Vidarsson G (2015) The multiple facets of FcRn in immunity. Immunol Rev 268:253–268

    Article  CAS  PubMed  Google Scholar 

  • Stiles BG, Pradhan K, Fleming JM, Samy RP, Barth H, Popoff MR (2014) Clostridium and bacillus binary enterotoxins: bad for the bowels, and eukaryotic being. Toxins (Basel) 6:2626–2656

    Article  CAS  Google Scholar 

  • Stirling CM, Charleston B, Takamatsu H, Claypool S, Lencer W, Blumberg RS, Wileman TE (2005) Characterization of the porcine neonatal Fc receptor–potential use for trans-epithelial protein delivery. Immunology 114:542–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Simister NE (2001) Tryptophan- and dileucine-based endocytosis signals in the neonatal Fc receptor. J Biol Chem 276:5240–5247

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Tuo W, Liu X, Simister NE, Zhu X (2008) Identification and characterization of an alternatively spliced variant of the MHC class I-related porcine neonatal Fc receptor for IgG. Dev Comp Immunol 32:966–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida M, Claypool SM, Wagner JS, Mizoguchi E, Mizoguchi A, Roopenian DC, Lencer WI, Blumberg RS (2004) Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 20:769–783

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Karina Rasmussen and Lotte Niels-Christiansen are thanked for excellent technical assistance. The study was supported by Grants from Hørslev Fonden (203688-MIA), Aase og Ejnar Danielsens Fond (10-001166), and Brødrene Hartmanns Fond (A26557).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Michael Danielsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Möller, R., Hansen, G.H. & Danielsen, E.M. IgG trafficking in the adult pig small intestine: one- or bidirectional transfer across the enterocyte brush border?. Histochem Cell Biol 147, 399–411 (2017). https://doi.org/10.1007/s00418-016-1492-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-016-1492-x

Keywords

Navigation