Skip to main content

Advertisement

Log in

Association of TGFβ signaling with the maintenance of a quiescent stem cell niche in human oral mucosa

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

A dogma in squamous epithelial biology is that proliferation occurs in the basal cell layer. Notable exceptions are squamous epithelia of the human oral cavity, esophagus, ectocervix, and vagina. In these human epithelia, proliferation is rare in the basal cell layer, and the vast majority of cells positive for Ki67 and other proliferation markers are found in para- and suprabasal cell layers. This unique human feature of a generally quiescent basal cell layer overlaid by highly proliferative cells offers the rare opportunity to study the molecular features of undifferentiated, quiescent, putative stem cells in their natural context. Here, we show that the quiescent human oral mucosa basal cell layer expresses putative markers of stemness, while para- and suprabasal cells are characterized by cell cycle genes. We identified a TGFβ signature in this quiescent basal cell layer. In in vitro organotypic cultures, human keratinocytes could be induced to express markers of these quiescent basal cells when TGFβ signaling is activated. The study suggests that the separation of basal cell layer and proliferation in human oral mucosa may function to accommodate high proliferation rates and the protection of a quiescent reserve stem cell pool. Psoriasis, an epidermal inflammatory hyperproliferative disease, exhibits features of a quiescent basal cell layer mimicking normal oral mucosa. Our data indicate that structural changes in the organization of epithelial proliferation could contribute to longevity and carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andl T, Kahn T, Pfuhl A, Nicola T, Erber R, Conradt C, Klein W, Helbig M, Dietz A, Weidauer H, Bosch FX (1998) Etiological involvement of oncogenic human papillomavirus in tonsillar squamous cell carcinomas lacking retinoblastoma cell cycle control. Cancer Res 58(1):5–13

    CAS  PubMed  Google Scholar 

  • Andl CD, Mizushima T, Nakagawa H et al (2003) Epidermal growth factor receptor mediates increased cell proliferation, migration, and aggregation in esophageal keratinocytes in vitro and in vivo. J Biol Chem 278(3):1824–1830

    Article  CAS  PubMed  Google Scholar 

  • Ardehali R, Inlay MA, Ali SR, Tang C, Drukker M, Weissman IL (2011) Overexpression of BCL2 enhances survival of human embryonic stem cells during stress and obviates the requirement for serum factors. Proc Natl Acad Sci USA 108(8):3282–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbera M, di Pietro M, Walker E et al (2015) The human squamous oesophagus has widespread capacity for clonal expansion from cells at diverse stages of differentiation. Gut 64(1):11–19

    Article  PubMed  Google Scholar 

  • Barker N (2012) Epithelial stem cells in the esophagus: who needs them? Cell Stem Cell 11(3):284–286

    Article  CAS  PubMed  Google Scholar 

  • Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10(3):207–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonan PR, Kaminagakura E, Pires FR, Vargas PA, de Almeida OP (2007) Histomorphometry and immunohistochemical features of grade I (WHO) oral radiomucositis. Oral Dis 13(2):170–176

    Article  CAS  PubMed  Google Scholar 

  • Bosch FX, Udvarhelyi N, Venter E, Herold-Mende C, Schuhmann A, Maier H, Weidauer H, Born AI (1993) Expression of the histone H3 gene in benign, semi-malignant and malignant lesions of the head and neck: a reliable proliferation marker. Eur J Cancer 29A(10):1454–1461

    Article  CAS  PubMed  Google Scholar 

  • Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K (2003) EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22(20):5323–5335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury A, Plückthun A (2015) Reproducibility: standardize antibodies used in research. Nature 518(7537):27–29. doi:10.1038/518027a

    Article  CAS  PubMed  Google Scholar 

  • Bredberg A (2009) Cancer resistance and Peto’s paradox. Proc Natl Acad Sci USA 106(20):E51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busuttil RA, Rubio M, Dollé ME et al (2006) Mutant frequencies and spectra depend on growth state and passage number in cells cultured from transgenic lacZ-plasmid reporter mice. DNA Repair 5(1):52–60

    Article  CAS  PubMed  Google Scholar 

  • Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R, Brummelkamp TR (2007) YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 17(23):2054–2060

    Article  CAS  PubMed  Google Scholar 

  • Caulin AF, Maley CC (2011) Peto’s Paradox: evolution’s prescription for cancer prevention. Trends Ecol Evol 26(4):175–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Chabanon A, Desterke C, Rodenburger E et al (2008) A cross-talk between stromal cell-derived factor-1 and transforming growth factor-beta controls the quiescence/cycling switch of CD34(+) progenitors through FoxO3 and mammalian target of rapamycin. Stem Cells 26(12):3150–3161

    Article  CAS  PubMed  Google Scholar 

  • Chen EY, Tan CM, Kou Y et al (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform 14:128

    Article  Google Scholar 

  • Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14(6):329–340

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Sultan S, Taylor SS, Higgins JM (2005) The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev 19(4):472–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • das Chagas E Silva de Carvalho LF, Farina VH, Cabral LA, Brandão AA, Coletta RD (2013) Immunohistochemical features of multifocal melanoacanthoma in the hard palate: a case report. BMC Res Notes 6:30. doi:10.1186/1756-0500-6-30

  • DeGregori J (2011) Evolved tumor suppression: why are we so good at not getting cancer? Cancer Res 71(11):3739–3744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeWard AD, Cramer J, Lagasse E et al (2014) Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population. Cell Rep 9(2):701–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doupé DP, Jones PH (2013) Cycling progenitors maintain epithelia while diverse cell types contribute to repair. BioEssays 35(5):443–451

    Article  PubMed  Google Scholar 

  • Doupé DP, Alcolea MP, Roshan A et al (2012) A single progenitor population switches behavior to maintain and repair esophageal epithelium. Science 337(6098):1091–1093

    Article  PubMed  PubMed Central  Google Scholar 

  • Dwivedi N, Chandra S, Kashyap B et al (2013) Suprabasal expression of Ki-67 as a marker for the severity of oral epithelial dysplasia and oral squamous cell carcinoma. Contemp Clin Dent 4(1):7–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Elbediwy A, Vincent-Mistiaen ZI, Spencer-Dene B, Stone RK, Boeing S, Wculek SK, Cordero J, Tan EH, Ridgway R, Brunton VG, Sahai E, Gerhardt H, Behrens A, Malanchi I, Sansom OJ, Thompson BJ (2016) Integrin signalling regulates YAP and TAZ to control skin homeostasis. Development 143(10):1674–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fong YW, Inouye C, Yamaguchi T, Cattoglio C, Grubisic I, Tjian R (2011) A DNA repair complex functions as an Oct4/Sox2 coactivator in embryonic stem cells. Cell 147(1):120–131. doi:10.1016/j.cell.2011.08.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gargiulo G, Cesaroni M, Serresi M, de Vries N, Hulsman D, Bruggeman SW, Lancini C, van Lohuizen M (2013) In vivo RNAi screen for BMI1 targets identifies TGF-β/BMP-ER stress pathways as key regulators of neural- and malignant glioma-stem cell homeostasis. Cancer Cell 23(5):660–676

    Article  CAS  PubMed  Google Scholar 

  • Gibbs S, Ponec M (2000) Intrinsic regulation of differentiation markers in human epidermis, hard palate and buccal mucosa. Arch Oral Biol 45(2):149–158

    Article  CAS  PubMed  Google Scholar 

  • Goldie SJ, Mulder KW, Tan DW, Lyons SK, Sims AH, Watt FM (2012) FRMD4A upregulation in human squamous cell carcinoma promotes tumor growth and metastasis and is associated with poor prognosis. Cancer Res 72(13):3424–3436. doi:10.1158/0008-5472.CAN-12-0423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Moles MA, Plaza-Campillo J, Ruiz-Ávila I et al (2014) Asymmetrical proliferative pattern loss during malignant transformation of the oral mucosa. J Oral Pathol Med 43(7):507–513

    Article  PubMed  Google Scholar 

  • Holliday R (1996) Neoplastic transformation: the contrasting stability of human and mouse cells. Cancer Surv 28:103–115

    CAS  PubMed  Google Scholar 

  • Hsu CY, Yang CF, Liao LR, Ho HL, Ho DM (2013) Tonsil surface epithelium is ideal for monitoring Ki-67 immunohistochemical staining. Histopathology 63(6):810–816. doi:10.1111/his.12228

    Article  PubMed  Google Scholar 

  • Huang GJ, K’ai WY (1984) Carcinoma of the esophagus and gastric cardia. Chapter 6 Qiong shen page 158; ISBN: 978-3-642-69185-0 (Print) 978-3-642-69183-6 (Online)

  • Jia HY, Shi Y, Luo LF, Jiang G, Zhou Q, Xu SZ, Lei TC (2016) Asymmetric stem-cell division ensures sustained keratinocyte hyperproliferation in psoriatic skin lesions. Int J Mol Med 37(2):359–368

    CAS  PubMed  Google Scholar 

  • Kandasamy M, Couillard-Despres S, Raber KA et al (2010) Stem cell quiescence in the hippocampal neurogenic niche is associated with elevated transforming growth factor-beta signaling in an animal model of Huntington disease. J Neuropathol Exp Neurol 69(7):717–728

    Article  PubMed  Google Scholar 

  • Kirmizis A, Bartley SM, Farnham PJ (2003) Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. Mol Cancer Ther 2(1):113–121

    CAS  PubMed  Google Scholar 

  • Kishimoto M, Fukui T, Suzuki R, Takahashi Y, Sumimoto K, Okazaki T, Sakao M, Sakaguchi Y, Yoshida K, Uchida K, Nishio A, Matsuzaki K, Okazaki K (2015) Phosphorylation of Smad2/3 at specific linker threonine indicates slow-cycling intestinal stem-like cells before reentry to cell cycle. Dig Dis Sci 60(2):362–374

    Article  CAS  PubMed  Google Scholar 

  • Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419(6904):316–321

    Article  CAS  PubMed  Google Scholar 

  • Kotelnikov VM, Coon JS, Taylor S et al (1996) Proliferation of epithelia of noninvolved mucosa in patients with head and neck cancer. Head Neck 18:522–528

    Article  CAS  PubMed  Google Scholar 

  • Kotelnikov V, Cass L, Coon JS, Spaulding D, Preisler HD (1997) Accuracy of histone H3 messenger RNA in situ hybridization for the assessment of cell proliferation in human tissues. Clin Cancer Res 3(5):669–673

    CAS  PubMed  Google Scholar 

  • Kurki P, Vanderlaan M, Dolbeare F, Gray J, Tan EM (1986) Expression of proliferating cell nuclear antigen (PCNA)/cyclin during the cell cycle. Exp Cell Res 166(1):209–219

    Article  CAS  PubMed  Google Scholar 

  • Lachmann A, Xu H, Krishnan J, Berger SI, Mazloom AR, Ma’ayan A (2010) ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics 26(19):2438–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanza R, Atala A (2013) Essential of stem cell biology. Chap 8, 3rd edn. p 96

  • Lee SH, Kim IJ, Kim JG, Park JS, Kim YS, Yamaguchi M, Kim CM, Yoo MA (2011) Regulation of intestinal stem cell proliferation by human methyl-CpG-binding protein-2 in Drosophila. Cell Struct Funct 36(2):197–208

    Article  CAS  PubMed  Google Scholar 

  • Liao HF, Chen WS, Chen YH, Kao TH, Tseng YT, Lee CY, Chiu YC, Lee PL, Lin QJ, Ching YH, Hata K, Cheng WT, Tsai MH, Sasaki H, Ho HN, Wu SC, Huang YH, Yen P, Lin SP (2014) DNMT3L promotes quiescence in postnatal spermatogonial progenitor cells. Development 12:2402–2413

    Article  Google Scholar 

  • Lin HY, Yang LT (2013) Differential response of epithelial stem cell populations in hair follicles to TGF-β signaling. Dev Biol 373(2):394–406

    Article  CAS  PubMed  Google Scholar 

  • Liu SC, Sauter ER, Clapper ML, Feldman RS, Levin L, Chen SY, Yen TJ, Ross E, Engstrom PF, Klein-Szanto AJ (1998) Markers of cell proliferation in normal epithelia and dysplastic leukoplakias of the oral cavity. Cancer Epidemiol Biomarkers Prev 7(7):597–603

    CAS  PubMed  Google Scholar 

  • Liu Y, Lyle S, Yang Z et al (2003) Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J Invest Dermatol 121(5):963–968

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Cheung TH, Charville GW, Hurgo BM, Leavitt T, Shih J, Brunet A, Rando TA (2013) Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep 4(1):189–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Mak SS, Moriyama M, Nishioka E, Osawa M, Nishikawa S (2006) Indispensable role of Bcl2 in the development of the melanocyte stem cell. Dev Biol 291(1):144–153

    Article  CAS  PubMed  Google Scholar 

  • Markert A, Grimm M, Martinez J, Wiesner J, Meyerhans A, Meyuhas O, Sickmann A, Fischer U (2008) The La-related protein LARP7 is a component of the 7SK ribonucleoprotein and affects transcription of cellular and viral polymerase II genes. EMBO Rep 9(6):569–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesa F, Aguilar M, Gonzalez-Moles MA, Guerrero A, Sanchez-Alvarez JC, Del Moral RG, O’Valle F (2004) Vigabatrin-induced modification of Ki-67 expression in gingival epithelium: immunohistochemical study of a short series. J Periodontal Res 39(1):66–71

    Article  CAS  PubMed  Google Scholar 

  • Moreno SG, Attali M, Allemand I et al (2010) TGFbeta signaling in male germ cells regulates gonocyte quiescence and fertility in mice. Dev Biol 342(1):74–84

    Article  CAS  PubMed  Google Scholar 

  • Mori M, Mizushima T, Koizumi K (1962) A comparative histochemical evaluation of various dehydrogenases in the oral squamous epithelium. Zeitschrift für Zellforschung und mikroskopische Anatomie Abt Histochemie 3(2):111–121

    CAS  Google Scholar 

  • Nicholson AM, Graham TA, Simpson A, Humphries A, Burch N, Rodriguez-Justo M, Novelli M, Harrison R, Wright NA, McDonald SA, Jankowski JA (2012) Barrett’s metaplasia glands are clonal, contain multiple stem cells and share a common squamous progenitor. Gut 61(10):1380–1389

    Article  CAS  PubMed  Google Scholar 

  • Nickoloff BJ, Bonish BK, Marble DJ, Schriedel KA, DiPietro LA, Gordon KB, Lingen MW (2006) Lessons learned from psoriatic plaques concerning mechanisms of tissue repair, remodeling, and inflammation. J Investig Dermatol Symp Proc 1(1):16–29

    Article  Google Scholar 

  • Nishimura EK, Granter SR, Fisher DE (2005) Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307:720–724

    Article  CAS  PubMed  Google Scholar 

  • Nishimura EK, Suzuki M, Igras V et al (2010) Key roles for transforming growth factor beta in melanocyte stem cell maintenance. Cell Stem Cell 6(2):130–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okumura T, Shimada Y, Sakurai T et al (2014) Abnormal cell proliferation in the p75NTR-positive basal cell compartment of the esophageal epithelium during squamous carcinogenesis. Dis Esophagus. doi:10.1111/dote.12245

    PubMed  Google Scholar 

  • Pan Q, Nicholson AM, Barr H et al (2013) Identification of lineage-uncommitted, long-lived, label-retaining cells in healthy human esophagus and stomach, and in metaplastic esophagus. Gastroenterology 144(4):761–770

    Article  PubMed  Google Scholar 

  • Papagerakis S, Pannone G, Zheng L et al (2014) Oral epithelial stem cells—implications in normal development and cancer metastasis. Exp Cell Res 325(2):111–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne S, Kernohan NM, Walker F (1996) Proliferation in the normal cervix and in preinvasive cervical lesions. J Clin Pathol 49(8):667–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecoraro V, Astore I, Barman J, Ignacioaraujo C (1964) The normal trichogram in the child before the age of puberty. J Invest Dermatol 42:427–430

    Article  CAS  PubMed  Google Scholar 

  • Peterson RT, Schreiber SL (1998) Translation control: connecting mitogens and the ribosome. Curr Biol 8(7):R248–R250

    Article  CAS  PubMed  Google Scholar 

  • Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104(3):973–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qing Y, Wang Z, Bunting KD et al (2014) Bcl2 overexpression rescues the hematopoietic stem cell defects in Ku70-deficient mice by restoration of quiescence. Blood 123(7):1002–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richmond CA, Shah MS, Carlone DL, Breault DT (2016) An enduring role for quiescent stem cells. Dev Dyn. doi:10.1002/dvdy.24416

    PubMed  Google Scholar 

  • Roche KC, Gracz AD, Liu XF, Newton V, Akiyama H, Magness ST (2015) SOX9 maintains reserve stem cells and preserves radio-resistance in mouse small intestine. Gastroenterology pii. doi:10.1053/j.gastro.2015.07

    Google Scholar 

  • Rowat JS, Squier CA (1996) Rates of epithelial cell proliferation in the oral mucosa and skin of the tamarin monkey (Saguinus fuscicollins). J Dent Res 65(11):1326–1331

    Article  Google Scholar 

  • Sakaki-Yumoto M, Katsuno Y, Derynck R (2013) TGF-β family signaling in stem cells. Biochim Biophys Acta 1830(2):2280–2296

    Article  CAS  PubMed  Google Scholar 

  • Seery JP, Watt FM (2000) Asymmetric stem-cell divisions define the architecture of human oesophageal epithelium. Curr Biol 10(22):1447–1450

    Article  CAS  PubMed  Google Scholar 

  • Shapiro HM (1981) Flow cytometric estimation of DNA and RNA content in intact cells stained with Hoechst 33342 and pyronin Y. Cytometry 2(3):143–150

    Article  CAS  PubMed  Google Scholar 

  • Squier CA, Kremer MJ (2001) Biology of oral mucosa and esophagus. J Natl Cancer Inst Monogr 29:7–15

    Article  PubMed  Google Scholar 

  • Symeonidou IE, Kotsantis P, Roukos V, Rapsomaniki MA, Grecco HE, Bastiaens P, Taraviras S, Lygerou Z (2013) Multi-step loading of human minichromosome maintenance proteins in live human cells. J Biol Chem 288(50):35852–35867. doi:10.1074/jbc.M113.474825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szekely B, Iwamoto T, Szasz AM, Qi Y, Matsuoka J, Symmans WF, Tokes AM, Kulka J, Swanton C, Pusztai L (2013) A 3-gene proliferation score (TOP-FOX-67) can re-classify histological grade-2, ER-positive breast cancers into low- and high-risk prognostic categories. Breast Cancer Res Treat 138(3):691–698

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Fukui T, Kishimoto M et al (2016) Phosphorylation of Smad2/3 at the specific linker threonine residue indicates slow-cycling esophageal stem-like cells before re-entry to the cell cycle. Dis Esophagus. doi:10.1111/dote.12277

    Google Scholar 

  • Terskikh VV, Vasiliev AV, Vorotelyak EA (2012) Label retaining cells and cutaneous stem cells. Stem Cell Rev 8(2):414–425. doi:10.1007/s12015-011-9299-6

    Article  PubMed  Google Scholar 

  • Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, de Sauvage FJ (2011) A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478(7368):255–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlen M, Oksvold P, Fagerberg L et al (2010) Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 28(12):1248–1250

    Article  CAS  PubMed  Google Scholar 

  • Uhlen M, Fagerberg L, Hallström BM et al (2015) Proteomics tissue-based map of the human proteome. Science 347(6220):1260419. doi:10.1126/science.12604197

    Article  PubMed  Google Scholar 

  • Uhlén M, Björling E, Agaton C et al (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4(12):1920–1932

    Article  PubMed  Google Scholar 

  • Venkatraman A, He XC, Thorvaldsen JL, Sugimura R, Perry JM, Tao F, Zhao M, Christenson MK, Sanchez R, Yu JY, Peng L, Haug JS, Paulson A, Li H, Zhong XB, Clemens TL, Bartolomei MS, Li L (2013) Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature 500(7462):345–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3(6):430–440

    Article  CAS  PubMed  Google Scholar 

  • Whitfield ML, George LK, Grant GD, Perou CM (2006) Common markers of proliferation. Nat Rev Cancer 6(2):99–106

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Xiong X, Zhang W, Zou H, Xie H, He S (2013) Morphogenesis of rete ridges in human oral mucosa: a pioneering morphological and immunohistochemical study. Cells Tissues Organs 197(3):239–248. doi:10.1159/000342926

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki S, Ema H, Karlsson G et al (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147(5):1146–1158

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Müller C, Huynh V, Fung YK, Yee AS, Koeffler HP (1999) Functions of cyclin A1 in the cell cycle and its interactions with transcription factor E2F-1 and the Rb family of proteins. Mol Cell Biol 19(3):2400–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamzam YA, El-Sak AM (2016) FOXO1 downregulation correlates with progression of esophageal intraepithelial neoplasia. J Cancer Res Treat 4(1):1–8

    Article  Google Scholar 

  • Zhao H, Wen G, Huang Y, Yu X, Chen Q, Afzal TA, le Luong A, Zhu J, Shu Y, Zhang L, Xiao Q (2015) MicroRNA-22 regulates smooth muscle cell differentiation from stem cells by targeting methyl CpG-binding protein 2. Arterioscler Thromb Vasc Biol 35(4):918–929

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank and acknowledge the support by the Translational Pathology Shared Resource (TPSR) at Vanderbilt Medical center, which is supported by the Cancer Center Support Grant 5P30 CA068485. We also would like to thank Dr. Lloyd King from the Division of Dermatology at Vanderbilt University for providing psoriasis tissue samples. We also thank Dr. Katie Colegrove at the College of Veterinary Medicine, University of Illinois at Urbana-Champaign for providing dolphin and sea lion tissue sections for analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhang Zhang or Thomas Andl.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 26064 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andl, C.D., Le Bras, G.F., Loomans, H. et al. Association of TGFβ signaling with the maintenance of a quiescent stem cell niche in human oral mucosa. Histochem Cell Biol 146, 539–555 (2016). https://doi.org/10.1007/s00418-016-1473-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-016-1473-0

Keywords

Navigation