Skip to main content

Advertisement

Log in

Evaluation of morphological features: femtosecond-LASIK flap vs. SMILE cap, and the effects on corneal higher-order aberrations

  • Refractive Surgery
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to evaluate morphological features of corneal flap/cap and the correlations with corneal higher-order aberrations (HOAs) changes after femtosecond laser in situ keratomileusis (FS-LASIK) and small incision lenticule extraction (SMILE).

Methods

This was a retrospective study. Pre- and postoperative (1 and 3 months) corneal HOAs were assessed with Pentacam HR. The corneal flap/cap thickness at 32 points (± 1.5 mm, ± 2 mm, ± 2.5 mm, and ± 3 mm from the corneal vertex on meridian 0°/45°/90°/135°) were measured using anterior segment optical coherence tomography at 3 months postoperatively. Morphological features of corneal flap/cap including predictability (P), uniformity (U), and symmetry (S) were calculated and used for correlation analysis with corneal HOAs changes.

Results

Eighty-six eyes (44 patients) and ninety-six eyes (50 patients) were involved in FS-LASIK and SMILE groups, respectively. Significant thicker corneal flap/cap than the predicted was observed at each measuring point and meridian in both groups (difference > 2.225 μm, the within-subject standard deviation over 6-mm optical zone). There was no statistically significant difference in predictability of corneal flap/cap thickness, while U6 mm (P < .0001), U0 (P < .001), U45 (P = .002), U90 (P < .0001), U135 (P = .004), S6 mm (P < .0001), S0 (P < .001), and S90 (P < .0001) over 6 mm zone were less in SMILE than in FS-LASIK. The changes of corneal tHOAs, Z (3, − 1), Z (3, 1), and SA were significantly correlated with morphological features of corneal flap/cap.

Conclusion

Both FS-LASIK and SMILE had good predictability in flap or cap thickness, while the uniformity and symmetry of SMILE cap were better than FS-LASIK flap. The quality of flap/cap was closely associated with the changes of corneal HOAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, Wong TY, Naduvilath TJ, Resnikoff S (2016) Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123(5):1036–1042. https://doi.org/10.1016/j.ophtha.2016.01.006

    Article  PubMed  Google Scholar 

  2. Jonas JB, Panda-Jonas S (2019) Epidemiology and anatomy of myopia. Ophthalmologe 116(6):499–508. https://doi.org/10.1007/s00347-019-0858-6

    Article  PubMed  Google Scholar 

  3. Porter J, MacRae S, Yoon G, Roberts C, Cox IG, Williams DR (2003) Separate effects of the microkeratome incision and laser ablation on the eye’s wave aberration. Am J Ophthalmol 136(2):327–337. https://doi.org/10.1016/S0002-9394(03)00222-8

    Article  PubMed  Google Scholar 

  4. Potgieter FJ, Roberts C, Cox IG, Mahmoud AM, Herderick EE, Roetz M, Steenkamp W (2005) Prediction of flap response. J Cataract Refract Surg 31(1):106–114. https://doi.org/10.1016/j.jcrs.2004.09.044

    Article  PubMed  Google Scholar 

  5. Tran DB, Sarayba MA, Bor Z, Garufis C, Duh YJ, Soltes CR, Juhasz T, Kurtz RM (2005) Randomized prospective clinical study comparing induced aberrations with IntraLase and Hansatome flap creation in fellow eyes: potential impact on wavefront-guided laser in situ keratomileusis. J Cataract Refract Surg 31(1):97–105. https://doi.org/10.1016/j.jcrs.2004.10.037

    Article  PubMed  Google Scholar 

  6. Hood CT, Krueger RR, Wilson SE (2013) The association between femtosecond laser flap parameters and ocular aberrations after uncomplicated custom myopic LASIK. Graefes Arch Clin Exp Ophthalmol 251(9):2155–2162. https://doi.org/10.1007/s00417-013-2328-1

    Article  PubMed  Google Scholar 

  7. Liu M, Zhou Y, Wu X, Ye T, Liu Q (2016) Comparison of 120- and 140-μm SMILE cap thickness results in eyes with thick corneas. Cornea 35:1308–1314. https://doi.org/10.1097/ICO.0000000000000924

    Article  PubMed  Google Scholar 

  8. Cheng ZY, He JC, Zhou XT, Chu RY (2008) Effect of flap thickness on higher order wavefront aberrations induced by LASIK: a bilateral study. J Refract Surg 24:524–529. https://doi.org/10.3928/1081597X-20080501-11

    Article  PubMed  Google Scholar 

  9. Liu T, Yu T, Liu L, Chen K, Bai J (2018) Corneal cap thickness and its effect on visual acuity and corneal biomechanics in eyes undergoing small incision lenticule extraction. J Ophthalmol 2018:6040873. https://doi.org/10.1155/2018/6040873

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee H, Kang D, Reinstein DZ, Roberts CJ, Renato Ambrósio J, Archer TJ, Jean SK, Kim EK, Seo KY, Jun I, Kim T-i (2019) Adjustment of spherical equivalent correction according to cap thickness for myopic small incision lenticule extraction. J Refract Surg 35(3):153–160. https://doi.org/10.3928/1081597X-20190205-01

    Article  PubMed  Google Scholar 

  11. Ozgurhan EB, Agca A, Bozkurt E, Gencer B, Celik U, Cankaya KIl, Demirok A, Yilmaz OF (2013) Accuracy and precision of cap thickness in small incision lenticule extraction. Clin Ophthalmol 7:923–926. https://doi.org/10.2147/OPTH.S45227

    Article  PubMed  PubMed Central  Google Scholar 

  12. Reinstein DZ, Archer TJ, Gobbe M, Khamar P, Shetty R, Vaishnav R, Francis M, Nuijts R, Sinha Roy A, Elmohamady MN, Abdelghaffar W, Daifalla A, Salem T (2013) Accuracy and reproducibility of cap thickness in small incision lenticule extraction. J Refract Surg 29(12):810–815. https://doi.org/10.3928/1081597X-20131023-02

    Article  PubMed  Google Scholar 

  13. Yao P, Xu Y, Zhou X (2011) Comparison of the predictability, uniformity and stability of a laser in situ keratomileusis corneal flap created with a VisuMax femtosecond laser or a Moria microkeratome. J Int Med Res 39:748–758. https://doi.org/10.1177/147323001103900306

    Article  CAS  PubMed  Google Scholar 

  14. Fan L, Xiong L, Zhang B, Wang Z (2019) Longitudinal and regional non-uniform remodeling of corneal epithelium after topography-guided FS-LASIK. J Refract Surg 35(2):88–95. https://doi.org/10.3928/1081597X-20190104-01

    Article  PubMed  Google Scholar 

  15. Reinstein DZ, Archer TJ, Gobbe M (2011) LASIK flap thickness profile and reproducibility of the standard vs zero compression Hansatome microkeratomes: three-dimensional display with Artemis VHF digital ultrasound. J Refract Surg 27(6):417–426. https://doi.org/10.3928/1081597X-20101110-01

    Article  PubMed  Google Scholar 

  16. Fu D, Wang L, Zhou XT, Yu ZQ (2018) Cap morphology after small-incision lenticule extraction and its effects on intraocular scattering. Int J Ophthalmol 11(3):456–461. https://doi.org/10.18240/ijo.2018.03.16

    Article  PubMed  PubMed Central  Google Scholar 

  17. He Q, Huang J, Xu Y, Han W (2019) Changes in total, anterior, and posterior corneal surface higher-order aberrations after 1.8 mm incision and 2.8 mm incision cataract surgery. J Cataract Refract Surg 45(8):1135–1147. https://doi.org/10.1016/j.jcrs.2019.02.038

    Article  PubMed  Google Scholar 

  18. McAlinden C, Khadka J, Pesudovs K (2015) Precision (repeatability and reproducibility) studies and sample-size calculation. J Cataract Refract Surg 41(12):2598–2604. https://doi.org/10.1016/j.jcrs.2015.06.029

    Article  PubMed  Google Scholar 

  19. Han T, Xu Y, Han X, Zeng L, Shang J, Chen X, Zhou X (2019) Three-year outcomes of small incision lenticule extraction (SMILE) and femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK) for myopia and myopic astigmatism. Br J Ophthalmol 103(4):565–568. https://doi.org/10.1136/bjophthalmol-2018-312140

    Article  PubMed  Google Scholar 

  20. Wei R, Li M, Zhang H, Aruma A, Miao H, Wang X, Zhou J, Zhou X (2020) Comparison of objective and subjective visual quality early after implantable collamer lens V4c (ICL V4c) and small incision lenticule extraction (SMILE) for high myopia correction. Acta Ophthalmol. https://doi.org/10.1111/aos.14459

    Article  PubMed  Google Scholar 

  21. Aruma A, Li M, Choi J, Miao H, Wei R, Yang D, Yao P, Sun L, Wang X, Zhou X (2021) Visual outcomes after small incision lenticule extraction and implantable collamer lens V4c for moderate myopia: 1-year results. Graefes Arch Clin Exp Ophthalmol. https://doi.org/10.1007/s00417-020-04982-4

    Article  PubMed  Google Scholar 

  22. Jiang Z, Wang H, Luo DQ, Chen J (2021) Optical and visual quality comparison of implantable collamer lens and femtosecond laser assisted laser in situ keratomileusis for high myopia correction. Int J Ophthalmol 14(5):737–743. https://doi.org/10.18240/ijo.2021.05.15

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lim KL, Fam HB (2009) Ethnic differences in higher-order aberrations: spherical aberration in the South East Asian Chinese eye. J Cataract Refract Surg 35(12):2144–2148. https://doi.org/10.1016/j.jcrs.2009.06.031

    Article  PubMed  Google Scholar 

  24. Gyldenkerne A, Ivarsen A, Hjortdal JO (2015) Comparison of corneal shape changes and aberrations induced By FS-LASIK and SMILE for myopia. J Refract Surg 31(4):223–229. https://doi.org/10.3928/1081597X-20150303-01

    Article  PubMed  Google Scholar 

  25. Ganesh S, Brar S, Relekar KJ (2016) Epithelial thickness profile changes following small incision refractive lenticule extraction (SMILE) for myopia and myopic astigmatism. J Refract Surg 32(7):473–482. https://doi.org/10.3928/1081597X-20160512-01

    Article  PubMed  Google Scholar 

  26. Luft N, Ring MH, Dirisamer M, Mursch-Edlmayr AS, Kreutzer TC, Pretzl J, Bolz M, Priglinger SG (2016) Corneal epithelial remodeling induced by small incision lenticule extraction (SMILE). Invest Ophthalmol Vis Sci 57(9):OCT176-83. https://doi.org/10.1167/iovs.15-18879

    Article  PubMed  Google Scholar 

  27. Ryu IH, Kim BJ, Lee JH, Kim SW (2017) Comparison of corneal epithelial remodeling after femtosecond laser-assisted LASIK and small incision lenticule extraction (SMILE). J Refract Surg 33(4):250–256. https://doi.org/10.3928/1081597X-20170111-01

    Article  PubMed  Google Scholar 

  28. Nassaralla BA, McLeod SD, JoJ N (2003) Effect of myopic LASIK on human corneal sensitivity. Ophthalmology 110(3):497–502. https://doi.org/10.1016/j.ajo.2017.03.013

    Article  PubMed  Google Scholar 

  29. Yvon C, Archer TJ, Gobbe M, Reinstein DZ (2015) Comparison of higher-order aberration induction between manual microkeratome and femtosecond laser flap creation. J Refract Surg 31(2):130–135. https://doi.org/10.3928/1081597X-20150122-09

    Article  PubMed  Google Scholar 

  30. Buzzonetti L, Petrocelli G, Valente P, Tamburrelli C, Mosca L, Laborante A, Balestrazzi E (2008) Comparison of corneal aberration changes after laser in situ keratomileusis performed with mechanical microkeratome and IntraLase femtosecond laser 1-year follow-up. Cornea 27:174–179. https://doi.org/10.1097/ICO.0b013e31815a50bf

    Article  PubMed  Google Scholar 

  31. Parafita-Fernandez A, Gros-Otero J, Villa-Collar C, Garcia-Gonzalez M, Teus M (2020) Effect of flap homogeneity on higher order aberration induction after femtosecond laser in situ keratomileusis for myopia. J Cataract Refract Surg 46:1278–1283. https://doi.org/10.1097/j.jcrs.0000000000000255

    Article  PubMed  Google Scholar 

  32. Kim JH, Lee D, Rhee KI (2008) Flap thickness reproducibility in laser in situ keratomileusis with a femtosecond laser: optical coherence tomography measurement. J Cataract Refract Surg 34(1):132–136. https://doi.org/10.1016/j.jcrs.2007.08.036

    Article  PubMed  Google Scholar 

  33. Jin HY, Wan T, Yu XN, Wu F, Yao K (2018) Corneal higher-order aberrations of the anterior surface, posterior surface, and total cornea after small incision lenticule extraction (SMILE): high myopia versus mild to moderate myopia. BMC Ophthalmol 18(1):295. https://doi.org/10.1186/s12886-018-0965-1

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang L, Wang Y, Zhao W, Cheng W, Cui T (2019) Corneal remodeling and spatial profiles following small incision lenticule extraction. Int Ophthalmol 39(8):1827–1836. https://doi.org/10.1007/s10792-018-1010-3

    Article  PubMed  Google Scholar 

  35. Özülken K, Kaderli A (2019) The effect of different optical zone diameters on the results of high-order aberrations in femto-laser-assisted in situ keratomileusis. Eur J Ophthalmol 30(6):1272–1277. https://doi.org/10.1177/1120672119865688

    Article  PubMed  Google Scholar 

  36. Lee H, Roberts CJ, Arba-Mosquera S, Kang DSY, Reinstein DZ, Kim TI (2018) Relationship between decentration and induced corneal higher-order aberrations following small-incision lenticule extraction procedure. Invest Ophthalmol Vis Sci 59(6):2316–2324. https://doi.org/10.1167/iovs.17-23451

    Article  PubMed  Google Scholar 

  37. Schroder S, Maurer S, Eppig T, Seitz B, Rubly K, Langenbucher A (2018) Comparison of corneal tomography: repeatability, precision, misalignment, mean elevation, and mean pachymetry. Curr Eye Res 43(6):709–716. https://doi.org/10.1080/02713683.2018.1441873

    Article  CAS  PubMed  Google Scholar 

  38. Lin YY, Carrel H, Wang IJ, Lin PJ, Hu FR (2005) Effect of tear film break-up on higher order aberrations of the anterior cornea in normal, dry, and post-LASIK eyes. J Refract Surg 21(5):S525–S529. https://doi.org/10.3928/1081-597x-20050901-21

    Article  PubMed  Google Scholar 

  39. Yingjie Z, Qin S, Yan J, Dan Z, Jibo Z (2016) Clinical outcomes of SMILE and FS-LASIK used to treat myopia: a meta-analysis. J Refract Surg 32(4):256–265. https://doi.org/10.3928/1081597X-20151111-06

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Han.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Second Affiliated Hospital, School of Medicine, Zhejiang University and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1

Supplemental Fig. 1 Predictability (a & b), uniformity (c & d), and symmetry (e & f) over 4- and 6-mm zone in different postoperative corrected distance visual acuity (CDVA) groups (including ≥0.00, -0.08, and -0.18 groups). The P-value is shown when there is significant difference between groups. FS-LASIK = femtosecond Laser in situ keratomileusis, SMILE = small incision lenticule extraction. (PNG 495 kb)

High resolution image (TIF 4693 kb)

Supplementary file2

Supplemental Fig. 2 Total higher-order aberrations for 4 mm (a) and 6 mm (b) analytical zones. The P-value is shown when there is significant difference between preoperative data and postoperative data. FS-LASIK = femtosecond Laser in situ keratomileusis, postop = postoperative, preop = preoperative, SMILE = small incision lenticule extraction, tHOAs = total higher-order aberrations. (PNG 724 kb)

High resolution image (TIF 9368 kb)

Supplementary file3

Supplemental Fig. 3 Individual Zernike terms of the total cornea (a), anterior (b), and posterior (c) corneal surface for 4 mm analytical zones. The P-value is shown when there is significant difference between preoperative data and postoperative data. FS-LASIK = femtosecond Laser in situ keratomileusis, postop = postoperative, preop = preoperative, SMILE = small incision lenticule extraction. (PNG 876 kb)

High resolution image (TIF 7868 kb)

Supplementary file4

Supplemental Fig. 4 Individual Zernike terms of the total cornea (a), anterior (b), and posterior (c) corneal surface for 6 mm analytical zones. The P-value is shown when there is significant difference between preoperative data and postoperative data. FS-LASIK = femtosecond Laser in situ keratomileusis, postop = postoperative, preop = preoperative, SMILE = small incision lenticule extraction. (PNG 877 kb)

Supplementary file5 (DOCX 16 KB)

Supplementary file6 (DOCX 20 KB)

Supplementary file7 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., He, Q., Yuan, M. et al. Evaluation of morphological features: femtosecond-LASIK flap vs. SMILE cap, and the effects on corneal higher-order aberrations. Graefes Arch Clin Exp Ophthalmol 260, 3993–4003 (2022). https://doi.org/10.1007/s00417-022-05841-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-022-05841-0

Keywords

Navigation