Skip to main content

Advertisement

Log in

Effect of prostaglandin analogues on the biomechanical corneal properties in patients with open-angle glaucoma and ocular hypertension measured with dynamic scheimpflug analyzer

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study is to evaluate the effect of topical prostaglandin (PG) treatment on the corneal biomechanical properties in treatment-naïve patients with either primary open-angle glaucoma (POAG) or ocular hypertension (OHT) using the Corvis ST device.

Methods

This is an observational study. We analyzed the Corvis ST dynamic corneal response parameters of our database using the newest software available. Thirty-four eyes of 34 patients were included. They were all newly diagnosed and treatment-naïve. Patients were evaluated at baseline and after 6 months of treatment with prostaglandin analogues.

Ultrasound pachymetry, Optical Coherence Tomography (OCT) and a 24–2 visual field test were performed in baseline visit. Goldman Applanation Tonometry (GAT-IOP) and Corvis ST dynamic corneal response parameters were registered at baseline and at the 6-month visit.

Results

After 6 months of treatment, the IOP decrease (Δ) values obtained with the different tonometers were ΔGAT -6.5 ± 3.7, ΔIOPnct -4.4 ± 5.7 and ΔbIOP -3.8 ± 5.4. The differences between ΔGAT vs ΔIOPnct, ΔGAT vs ΔbIOP, and ΔIOPnct vs ΔbIOP, were statistically significant (p < 0.05 for all comparisons). Statistically significant lower values of the stress–strain index (SSI) (1.77 ± 0.3 at baseline vs 1.54 ± 0.27 at the 6-month visit) were found (p = 0.0002).

Conclusion

The SSI provided by the Corvis ST seems to decrease significantly after topical prostaglandin therapy. We believe that our results support the hypothesis that topical PG therapy does decrease the corneal stiffness and thus, that the ocular hypotensive effect of these drugs is overestimated if GAT is used for IOP measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kingman S (2004) Glaucoma is second leading cause of blindness globally. Bull World Health Organ 82(11):887–888

    PubMed  PubMed Central  Google Scholar 

  2. Liu J, Roberts CJ (2005) Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg 31(1):146–155. https://doi.org/10.1016/j.jcrs.2004.09.031

    Article  PubMed  Google Scholar 

  3. Ehlers N, Bramsen T, Sperling S (1975) Applanation tonometry and central corneal thickness. Acta Ophthalmol 53(1):34–43. https://doi.org/10.1111/j.1755-3768.1975.tb01135.x

    Article  CAS  Google Scholar 

  4. Gordon MO, Beiser JA, Brandt JD et al (2002) The ocular hypertension treatment study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol (Chicago, Ill.: 1960) 120(6):714–830. https://doi.org/10.1001/archopht.120.6.714

    Article  Google Scholar 

  5. De Moraes CV, Hill V, Tello C et al (2012) Lower corneal hysteresis is associated with more rapid glaucomatous visual field progression. J Glaucoma 21(4):209–213. https://doi.org/10.1097/IJG.0b013e3182071b92

    Article  PubMed  Google Scholar 

  6. Helmy H, Leila M, Zaki AA (2016) Corneal biomechanics in asymmetrical normal-tension glaucoma. Clin Ophthalmol (Auckland, N.Z.) 10:503–510. https://doi.org/10.2147/OPTH.S93725

    Article  Google Scholar 

  7. Spörl E, Terai N, Haustein M, Böhm AG et al (2009) Biomechanische Zustand der Hornhaut als neuer Indikator für pathologische und strukturelle Veränderungen [Biomechanical condition of the cornea as a new indicator for pathological and structural changes]. Der Ophthalmologe: Zeitschrift der Dtsch Ophthalmologischen Ges 106(6):512–520. https://doi.org/10.1007/s00347-008-1910-0

    Article  Google Scholar 

  8. Doucette LP, Walter MA (2017) Prostaglandins in the eye: function, expression, and roles in glaucoma. Ophthalmic Genet 38(2):108–116. https://doi.org/10.3109/13816810.2016.1164193

    Article  CAS  PubMed  Google Scholar 

  9. Tang W, Zhang F, Liu K et al (2019) Efficacy and safety of prostaglandin analogues in primary open-angle glaucoma or ocular hypertension patients: a meta-analysis. Medicine 98(30):e16597. https://doi.org/10.1097/MD.0000000000016597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weinreb RN, Kashiwagi K, Kashiwagi F et al (1997) Prostaglandins increase matrix metalloproteinase release from human ciliary smooth muscle cells. Invest Ophthalmol Vis Sci 38(13):2772–2780

    CAS  PubMed  Google Scholar 

  11. Gutiérrez-Ortiz C, Teus MA, Bolivar G (2006) Short-term effects of latanoprost on anterior chamber depth in patients with glaucoma or ocular hypertension. Invest Ophthalmol Vis Sci 47(11):4856–4859. https://doi.org/10.1167/iovs.06-0014

    Article  PubMed  Google Scholar 

  12. Wang J, Zhao Y, Yu A et al (2022) Effect of travoprost, latanoprost and bimatoprost PGF2α treatments on the biomechanical properties of in-vivo rabbit cornea. Exp Eye Res 215:108920. https://doi.org/10.1016/j.exer.2022.108920

    Article  CAS  PubMed  Google Scholar 

  13. Meda R, Wang Q, Paoloni D et al (2017) The impact of chronic use of prostaglandin analogues on the biomechanical properties of the cornea in patients with primary open-angle glaucoma. Br J Ophthalmol 101(2):120–125. https://doi.org/10.1136/bjophthalmol-2016-308432

    Article  PubMed  Google Scholar 

  14. Yasukura Y, Miki A, Maeda N et al (2021) Effect of prostaglandin analogues on corneal biomechanical parameters measured with a dynamic Scheimpflug Analyzer. J Glaucoma 30(11):996–1000. https://doi.org/10.1097/IJG.0000000000001895

    Article  PubMed  Google Scholar 

  15. Jung Y, Park HL, Oh S et al (2020) Corneal biomechanical responses detected using corvis st in primary open angle glaucoma and normal tension glaucoma. Medicine 99(7):e19126. https://doi.org/10.1097/MD.0000000000019126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tsikripis P, Papaconstantinou D, Koutsandrea C et al (2013) The effect of prostaglandin analogs on the biomechanical properties and central thickness of the cornea of patients with open-angle glaucoma: a 3-year study on 108 eyes. Drug Des Dev Ther 7:1149–1156. https://doi.org/10.2147/DDDT.S50622

    Article  Google Scholar 

  17. Eliasy A, Chen KJ, Vinciguerra R et al (2019) Determination of corneal biomechanical behavior in-vivo for healthy eyes using CorVis ST tonometry: stress-strain index. Front Bioeng Biotechnol 7:105. https://doi.org/10.3389/fbioe.2019.00105

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bolívar G, Sánchez-Barahona C, Teus M et al (2015) Effect of topical prostaglandin analogues on corneal hysteresis. Acta Ophthalmol 93(6):e495–e498. https://doi.org/10.1111/aos.12689

    Article  CAS  PubMed  Google Scholar 

  19. Amano S, Nejima R, Inoue K et al (2019) Effect of topical prostaglandins on the biomechanics and shape of the cornea. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 257(10):2213–2219. https://doi.org/10.1007/s00417-019-04435-7

  20. Scott JA, Roberts CJ, Mahmoud AM et al (2021) Evaluating the relationship of intraocular pressure and anterior chamber volume with use of prostaglandin analogues. J Glaucoma 30(5):421–427. https://doi.org/10.1097/IJG.0000000000001736

    Article  PubMed  Google Scholar 

  21. Han F, Li M, Wei P et al (2020) Effect of biomechanical properties on myopia: a study of new corneal biomechanical parameters. BMC Ophthalmol 20(1):459. https://doi.org/10.1186/s12886-020-01729-x

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu G, Rong H, Pei R et al (2020) Age distribution and associated factors of cornea biomechanical parameter stress-strain index in Chinese healthy population. BMC Ophthalmol 20(1):436. https://doi.org/10.1186/s12886-020-01704-6

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhao W, Shen Y, Jian W et al (2020) Comparison of corneal biomechanical properties between post-LASIK ectasia and primary keratoconus. J Ophthalmol 2020:5291485. https://doi.org/10.1155/2020/5291485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vinciguerra R, Rehman S, Vallabh NA et al (2020) Corneal biomechanics and biomechanically corrected intraocular pressure in primary open-angle glaucoma, ocular hypertension and controls. Br J Ophthalmol 104(1):121–126. https://doi.org/10.1136/bjophthalmol-2018-313493

    Article  PubMed  Google Scholar 

  25. Pillunat KR, Herber R, Spoerl E et al (2019) A new biomechanical glaucoma factor to discriminate normal eyes from normal pressure glaucoma eyes. Acta Ophthalmol 97(7):e962–e967. https://doi.org/10.1111/aos.14115

    Article  PubMed  Google Scholar 

  26. Aoki S, Miki A, Omoto T et al (2021) Biomechanical glaucoma factor and corneal hysteresis in treated primary open-angle glaucoma and their associations with visual field progression. Invest Ophthalmol Vis Sci 62(7):4. https://doi.org/10.1167/iovs.62.7.4

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sánchez-Barahona C, Bolívar G, Katsanos A et al (2019) Latanoprost treatment differentially affects intraocular pressure readings obtained with three different tonometers. Acta Ophthalmol 97(8):e1112–e1115. https://doi.org/10.1111/aos.14170

    Article  CAS  PubMed  Google Scholar 

  28. Chen S, Lopes BT, Huang W, Zheng X et al (2020) Effectiveness of 4 tonometers in measuring IOP after femtosecond laser-assisted LASIK, SMILE, and transepithelial photorefractive keratectomy. J Cataract Refract Surg 46(7):967–974. https://doi.org/10.1097/j.jcrs.0000000000000204

    Article  PubMed  Google Scholar 

  29. Garway-Heath DF, Crabb DP, Bunce C et al (2015) Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet (London, England) 385(9975):1295–1304. https://doi.org/10.1016/S0140-6736(14)62111-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to the doctors Castejon M.A., Gutiérrez-Ortiz, C., Paz-Moreno Arrones J., belonging to the Glaucoma Unit at Hospital Príncipe de Asturias, who have participated together with the authors, in the recruitment and follow-up of the patients who were included in the study.

Funding

The Foundation for Biomedical Research of the ‘‘Hospital Universitario Príncipe de Asturias’’ has awarded our group a grant codified as FIB-PI21/-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Isabel Martínez-Sánchez.

Ethics declarations

Ethics approval and consent to participate

The research involves human participants and all procedures performed in studies involving human participants were in accordance with the ethical standards of the local Institutional Review Board (CEIm) of the Hospital Universitario Príncipe de Asturias with the number OE 15/2020 and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study after being informed about all the potential risks and benefits of the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Sánchez, M.I., Bolívar, G., Sideroudi, H. et al. Effect of prostaglandin analogues on the biomechanical corneal properties in patients with open-angle glaucoma and ocular hypertension measured with dynamic scheimpflug analyzer. Graefes Arch Clin Exp Ophthalmol 260, 3927–3933 (2022). https://doi.org/10.1007/s00417-022-05752-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-022-05752-0

Keywords

Navigation