Skip to main content

Advertisement

Log in

Subfoveal choroidal thickness after brolucizumab therapy for neovascular age-related macular degeneration: a short-term multicenter study

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background/purpose

Observation of choroidal thickness after anti-vascular endothelial growth factor (VEGF) therapy may be important for the ideal management of neovascular age-related macular degeneration (AMD). This study investigated changes in subfoveal choroidal thickness (SCT) during loading doses of intravitreal injections of brolucizumab in eyes with neovascular AMD.

Methods

This study included 73 eyes of 72 patients with neovascular AMD at five university hospitals in Japan. All 73 eyes underwent three monthly 6.0 mg intravitreal injections of brolucizumab at baseline, 1 month, and 2 months. The SCT at 3 months was evaluated using optical coherence tomography.

Results

The 73 eyes were classified into the treatment-naïve group (43 eyes) and the switched group (30 eyes) that were switched from other anti-VEGF treatments. After three intravitreal injections of brolucizumab, SCT significantly decreased from 236.5 ± 98.8 µm at baseline to 200.4 ± 98.3 µm at 3 months (percent of baseline 84.7%, P < 0.001) in the treatment-naïve group. In the switched group, SCT also significantly decreased from 229.0 ± 113.2 μm at baseline to 216.9 ± 110.2 μm at 3 months (percent of baseline 94.7%, P = 0.039), although the decrease was not as marked compared to that of the treatment-naïve group.

Conclusion

Intravitreal injections of brolucizumab for neovascular AMD significantly reduced the SCT in both the treatment-naïve and switched groups. Brolucizumab may cause significant anatomic changes in the choroid, particularly in treatment-naïve AMD eyes, possibly more than that previously reported for other anti-VEGF agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wong TY, Chakravarthy U, Klein R, Mitchell P, Zlateva G, Buggage R, Fahrbach K, Probst C, Sledge I (2008) The natural history and prognosis of neovascular age-related macular degeneration: a systematic review of the literature and meta-analysis. Ophthalmology 115:116–126

    Article  Google Scholar 

  2. Brown D, Heier JS, Boyer DS, Freund KB, Kaiser P, Kim JE, Sarraf D (2017) Current best clinical practices—management of neovascular AMD. Journal of VitreoRetinal Diseases 1:294–297. https://doi.org/10.1177/2474126417725946

    Article  Google Scholar 

  3. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY, Group MS (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355:1419–1431. https://doi.org/10.1056/NEJMoa054481

    Article  Google Scholar 

  4. Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, Sy JP, Schneider S (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 355:1432–1444

    Article  CAS  Google Scholar 

  5. Heier JS, Brown DM, Chong V, Korobelnik JF, Kaiser PK, Nguyen QD, Kirchhof B, Ho A, Ogura Y, Yancopoulos GD, Stahl N, Vitti R, Berliner AJ, Soo Y, Anderesi M, Groetzbach G, Sommerauer B, Sandbrink R, Simader C, Schmidt-Erfurth U (2012) Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology 119:2537–2548. https://doi.org/10.1016/j.ophtha.2012.09.006

    Article  PubMed  Google Scholar 

  6. Eghoj MS, Sorensen TL (2012) Tachyphylaxis during treatment of exudative age-related macular degeneration with ranibizumab. Br J Ophthalmol 96:21–23. https://doi.org/10.1136/bjo.2011.203893

    Article  PubMed  Google Scholar 

  7. Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, Wong TY (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2:e106-116. https://doi.org/10.1016/S2214-109X(13)70145-1

    Article  PubMed  Google Scholar 

  8. Freund KB, Korobelnik JF, Devenyi R, Framme C, Galic J, Herbert E, Hoerauf H, Lanzetta P, Michels S, Mitchell P, Mones J, Regillo C, Tadayoni R, Talks J, Wolf S (2015) Treat-and-extend regimens with anti-vegf agents in retinal diseases: a literature review and consensus recommendations. Retina 35:1489–1506. https://doi.org/10.1097/IAE.0000000000000627

    Article  CAS  PubMed  Google Scholar 

  9. Dugel PU, Koh A, Ogura Y, Jaffe GJ, Schmidt-Erfurth U, Brown DM, Gomes AV, Warburton J, Weichselberger A, Holz FG, Hawk IHS (2020) HAWK and HARRIER: phase 3, multicenter, randomized, double-masked trials of brolucizumab for neovascular age-related macular degeneration. Ophthalmology 127:72–84. https://doi.org/10.1016/j.ophtha.2019.04.017

    Article  PubMed  Google Scholar 

  10. Spaide RF, Koizumi H, Pozzoni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500. https://doi.org/10.1016/j.ajo.2008.05.032

    Article  PubMed  Google Scholar 

  11. Ikuno Y, Kawaguchi K, Nouchi T, Yasuno Y (2010) Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci 51:2173-2176 iovs.09 4383. https://doi.org/10.1167/iovs.09-4383

    Article  PubMed  Google Scholar 

  12. Koizumi H, Yamagishi T, Yamazaki T, Kawasaki R, Kinoshita S (2011) Subfoveal choroidal thickness in typical age-related macular degeneration and polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol 249:1123–1128. https://doi.org/10.1007/s00417-011-1620-1

    Article  PubMed  Google Scholar 

  13. Chung SE, Kang SW, Lee JH, Kim YT (2011) Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology 118:840-845 S0161-6420(10)00980–2. https://doi.org/10.1016/j.ophtha.2010.09.012

    Article  PubMed  Google Scholar 

  14. Yamazaki T, Koizumi H, Yamagishi T, Kinoshita S (2014) Subfoveal choroidal thickness in retinal angiomatous proliferation. Retina 34:1316–1322. https://doi.org/10.1097/IAE.0000000000000086

    Article  PubMed  Google Scholar 

  15. Yun C, Oh J, Ahn J, Hwang SY, Lee B, Kim SW, Huh K (2016) Comparison of intravitreal aflibercept and ranibizumab injections on subfoveal and peripapillary choroidal thickness in eyes with neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 254:1693–1702. https://doi.org/10.1007/s00417-015-3260-3

    Article  CAS  PubMed  Google Scholar 

  16. Yamazaki T, Koizumi H, Yamagishi T, Kinoshita S (2012) Subfoveal choroidal thickness after ranibizumab therapy for neovascular age-related macular degeneration: 12-month results. Ophthalmology 119:1621–1627. https://doi.org/10.1016/j.ophtha.2012.02.022

    Article  PubMed  Google Scholar 

  17. Koizumi H, Kano M, Yamamoto A, Saito M, Maruko I, Sekiryu T, Okada AA, Iida T (2015) Aflibercept therapy for polypoidal choroidal vasculopathy: short-term results of a multicentre study. Br J Ophthalmol 99:1284–1288. https://doi.org/10.1136/bjophthalmol-2014-306432

    Article  PubMed  Google Scholar 

  18. Koizumi H, Kano M, Yamamoto A, Saito M, Maruko I, Kawasaki R, Sekiryu T, Okada AA, Iida T (2015) Short-term changes in choroidal thickness after aflibercept therapy for neovascular age-related macular degeneration. Am J Ophthalmol 159(627–633):e621. https://doi.org/10.1016/j.ajo.2014.12.025

    Article  CAS  Google Scholar 

  19. Koizumi H, Kano M, Yamamoto A, Saito M, Maruko I, Sekiryu T, Okada AA, Iida T (2016) Subfoveal choroidal thickness during aflibercept therapy for neovascular age-related macular degeneration: twelve-month results. Ophthalmology 123:617–624. https://doi.org/10.1016/j.ophtha.2015.10.039

    Article  PubMed  Google Scholar 

  20. Spaide RF, Yannuzzi LA, Slakter JS, Sorenson J, Orlach DA (1995) Indocyanine green videoangiography of idiopathic polypoidal choroidal vasculopathy. Retina 15:100–110

    Article  CAS  Google Scholar 

  21. Yannuzzi LA, Negrao S, Iida T, Carvalho C, Rodriguez-Coleman H, Slakter J, Freund KB, Sorenson J, Orlock D, Borodoker N (2001) Retinal angiomatous proliferation in age-related macular degeneration. Retina 21:416–434

    Article  CAS  Google Scholar 

  22. Spaide RF, Jaffe GJ, Sarraf D, Freund KB, Sadda SR, Staurenghi G, Waheed NK, Chakravarthy U, Rosenfeld PJ, Holz FG, Souied EH, Cohen SY, Querques G, Ohno-Matsui K, Boyer D, Gaudric A, Blodi B, Baumal CR, Li X, Coscas GJ, Brucker A, Singerman L, Luthert P, Schmitz-Valckenberg S, Schmidt-Erfurth U, Grossniklaus HE, Wilson DJ, Guymer R, Yannuzzi LA, Chew EY, Csaky K, Mones JM, Pauleikhoff D, Tadayoni R, Fujimoto J (2020) Consensus nomenclature for reporting neovascular age-related macular degeneration data: consensus on neovascular age-related macular degeneration nomenclature study group. Ophthalmology 127:616–636. https://doi.org/10.1016/j.ophtha.2019.11.004

    Article  PubMed  Google Scholar 

  23. Maruko I, Iida T, Saito M, Nagayama D, Saito K (2007) Clinical characteristics of exudative age-related macular degeneration in Japanese patients. Am J Ophthalmol 144:15–22

    Article  Google Scholar 

  24. Jabs DA, Nussenblatt RB, Rosenbaum JT, Standardization of Uveitis Nomenclature Working G, (2005) Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol 140:509–516. https://doi.org/10.1016/j.ajo.2005.03.057

    Article  PubMed  Google Scholar 

  25. Ellabban AA, Tsujikawa A, Ogino K, Ooto S, Yamashiro K, Oishi A, Yoshimura N (2012) Choroidal thickness after intravitreal ranibizumab injections for choroidal neovascularization. Clin Ophthalmol 6:837–844. https://doi.org/10.2147/OPTH.S30907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kikushima W, Sakurada Y, Yoneyama S, Sugiyama A, Tanabe N, Kume A, Mabuchi F, Iijima H (2017) Incidence and risk factors of retreatment after three-monthly aflibercept therapy for exudative age-related macular degeneration. Sci Rep 7:44020. https://doi.org/10.1038/srep44020

    Article  PubMed  PubMed Central  Google Scholar 

  27. Morimoto M, Matsumoto H, Mimura K, Akiyama H (2017) Two-year results of a treat-and-extend regimen with aflibercept for polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol 255:1891–1897. https://doi.org/10.1007/s00417-017-3718-6

    Article  CAS  PubMed  Google Scholar 

  28. Matsumoto H, Sato T, Morimoto M, Mukai R, Takahashi M, Hiroe T, Ehara K, Takayama M, Mimura K, Kishi S (2016) Treat-and-extend regimen with aflibercept for retinal angiomatous proliferation. Retina 36:2282–2289. https://doi.org/10.1097/IAE.0000000000001104

    Article  CAS  PubMed  Google Scholar 

  29. Matsumoto H, Hoshino J, Mukai R, Nakamura K, Akiyama H (2021) Short-term outcomes of intravitreal brolucizumab for treatment-naive neovascular age-related macular degeneration with type 1 choroidal neovascularization including polypoidal choroidal vasculopathy. Sci Rep 11:6759. https://doi.org/10.1038/s41598-021-86014-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saito M, Kano M, Itagaki K, Ise S, Imaizumi K, Sekiryu T (2016) Subfoveal choroidal thickness in polypoidal choroidal vasculopathy after switching to intravitreal aflibercept injection. Jpn J Ophthalmol 60:35–41. https://doi.org/10.1007/s10384-015-0411-3

    Article  CAS  PubMed  Google Scholar 

  31. Maruko I, Iida T, Sugano Y, Saito M, Sekiryu T (2011) Subfoveal retinal and choroidal thickness after verteporfin photodynamic therapy for polypoidal choroidal vasculopathy. Am J Ophthalmol 151:594-603 e591 S0002-9394(10)00839–1. https://doi.org/10.1016/j.ajo.2010.10.030

    Article  CAS  PubMed  Google Scholar 

  32. Lowe J, Araujo J, Yang J, Reich M, Oldendorp A, Shiu V, Quarmby V, Lowman H, Lien S, Gaudreault J, Maia M (2007) Ranibizumab inhibits multiple forms of biologically active vascular endothelial growth factor in vitro and in vivo. Experimental eye Res 85:425-430 S0014-4835(07)00153–4. https://doi.org/10.1016/j.exer.2007.05.008

    Article  CAS  Google Scholar 

  33. Papadopoulos N, Martin J, Ruan Q, Rafique A, Rosconi MP, Shi E, Pyles EA, Yancopoulos GD, Stahl N, Wiegand SJ (2012) Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis 15:171–185. https://doi.org/10.1007/s10456-011-9249-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sadda SR, Abdelfattah NS, Lei J, Shi Y, Marion KM, Morgenthien E, Gune S, Balasubramanian S (2020) Spectral-domain OCT analysis of risk factors for macular atrophy development in the HARBOR study for neovascular age-related macular degeneration. Ophthalmology 127:1360–1370. https://doi.org/10.1016/j.ophtha.2020.03.031

    Article  PubMed  Google Scholar 

  35. Kuroda Y, Yamashiro K, Ooto S, Tamura H, Oishi A, Nakanishi H, Miyata M, Hata M, Takahashi A, Wakazono T, Yoshimura N, Tsujikawa A (2018) Macular atrophy and macular morphology in aflibercept-treated neovascular age-related macular degeneration. Retina 38:1743–1750. https://doi.org/10.1097/IAE.0000000000001765

    Article  CAS  PubMed  Google Scholar 

  36. Koizumi H, Yamamoto A, Ogasawara M, Maruko I, Hasegawa T, Itagaki K, Sekiryu T, Okada AA, Iida T (2020) Macular atrophy after aflibercept therapy for neovascular age-related macular degeneration: outcomes of Japanese multicenter study. Jpn J Ophthalmol 64:338–345. https://doi.org/10.1007/s10384-020-00745-0

    Article  CAS  PubMed  Google Scholar 

  37. Mones J, Srivastava SK, Jaffe GJ, Tadayoni R, Albini TA, Kaiser PK, Holz FG, Korobelnik JF, Kim IK, Pruente C, Murray TG, Heier JS (2020) Risk of inflammation, retinal vasculitis, and retinal occlusion-related events with brolucizumab: post hoc review of HAWK and HARRIER. Ophthalmology. https://doi.org/10.1016/j.ophtha.2020.11.011

    Article  PubMed  Google Scholar 

  38. Baumal CR, Bodaghi B, Singer M, Tanzer DJ, Seres A, Joshi MR, Feltgen N, Gale R (2020) Expert opinion on management of intraocular inflammation, retinal vasculitis, and vascular occlusion after brolucizumab treatment. Ophthalmol Retina. https://doi.org/10.1016/j.oret.2020.09.020

    Article  PubMed  PubMed Central  Google Scholar 

  39. Maruko I, Okada AA, Iida T, Hasegawa T, Izumi T, Kawai M, Maruko R, Nakayama M, Yamamoto A, Koizumi H, Tamashiro T, Terao N, Wakugawa S, Mori R, Onoe H, Tanaka K, Wakatsuki Y, Itagaki K, Kasai A, Ogasawara M, Sekiryu T, Shintake H, Sugano Y, Japan AMDRC (2021) Brolucizumab-related intraocular inflammation in Japanese patients with age-related macular degeneration: a short-term multicenter study. Graefes Arch Clin Exp Ophthalmol 259:2857–2859. https://doi.org/10.1007/s00417-021-05136-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ikuno Y, Maruko I, Yasuno Y, Miura M, Sekiryu T, Nishida K, Iida T (2011) Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci 52:5536–5540. https://doi.org/10.1167/iovs.10-6811

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Japan AMD Research Consortium (JARC): Tamaki Tamashiro, MD, Sorako Wakugawa, MD, Nobuhiro Terao, MD, PhD, and Hideki Koizumi, MD, PhD (Department of Ophthalmology, Graduate School of Medicine, University of the Ryukyus, Japan); Koji Tanaka, MD, PhD, Hajime Onoe, MD, Yu Wakatsuki, MD, PhD, and Ryusaburo Mori, MD, PhD (Department of Ophthalmology, Nihon University School of Medicine, Japan). Kanako Itagaki, MD, Akihito Kasai, MD, Masashi Ogasawara, MD, Hiroaki Shintake, MD, and Yukinori Sugano, MD, PhD, and Tetsuju Sekiryu, MD, PhD (Department of Ophthalmology, Fukushima Medical University, Japan). Makiko Nakayama, MD, PhD, Akiko Yamamoto, MD, PhD, Keiko Kataoka, MD, PhD, and Annabelle A. Okada, MD, PhD (Department of Ophthalmology, Kyorin University School of Medicine, Japan); Ichiro Maruko, MD, PhD, Taiji Hasegawa, MD, PhD, Takahiko Izumi, MD, PhD, Moeko Kawai, MD, and Ruka Maruko, MD, PhD, and Tomohiro Iida, MD, PhD (Department of Ophthalmology, Tokyo Women’s Medical University, Japan).

Funding

This work was supported by JSPS KAKENHI Grant Number JP21K09746 (Prof. Koizumi). Japan Society for the Promotion of Science, JP21K09746,Hideki Koizumi

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Hideki Koizumi.

Ethics declarations

Ethics approval

The study protocol was approved by the institutional review board of each university and was conducted in accordance with the guidelines of the Declaration of Helsinki.

Consent to participate

Written informed consent was obtained from all the patients included in this study.

Conflict of interest

Dr. Tamashiro reported personal fees from Alcon, Novartis, and Senju outside the submitted work. Dr. Tanaka reported personal fees from Alcon, Bayer, Novartis, Santen, and Senju outside the submitted work. Dr. Itagaki reported personal fees from Bayer and Novartis outside the submitted work. Dr. Nakayama has nothing to disclose. Dr. Maruko reported grants from JSPS KAKENHI (Grant Number JP20K09781); personal fees from Alcon, Bayer, Canon, Nidek, Novartis, Santen, Senju, and Topcon outside the submitted work. Dr. Wakugawa reported personal fees from Senju and Novartis outside the submitted work. Dr. Terao reported personal fees from Bayer, Nidek, Novartis, Senju, Santen, and Topcon outside the submitted work. Dr. Onoe reported personal fees from AMO and Novartis outside the submitted work. Dr. Wakatsuiki reported personal fees from Bayer outside the submitted work. Dr. Ogasawara has nothing to disclose. Dr. Sugano has nothing to disclose. Dr. Yamamoto reported personal fees from Alcon, Bayer, Novartis, Otsuka, and Santen outside the submitted work. Dr. Kataoka reported personal fees from Bayer, Novartis, Santen, and Senju outside the submitted work. Dr. Izumi reported personal fees from Senju and Topcon outside the submitted work. Dr. Kawai has nothing to disclose. Dr. Mori reported personal fees from Novartis, Bayer, Senju, Santen, Bausch & Lomb, JFC, Nikon, and Acula outside the submitted work. Dr. Sekiryu reported personal fees from Novartis, Bayer, Senju, Santen, Kowa, Allergan, and Chugai outside the submitted work. Dr. Okada reported consulting fees from Astellas, Bayer, Biocon Biologics, Daiichi Sankyo, HOYA, Kowa, and Novartis; personal support from Abbvie, Alcon, Bayer, Mitsubishi Tanabe, Novartis, Pfizer, Santen, and Senju outside the submitted work. Dr. Iida reported consulting fees from Bayer and Chugai; personal fees from AMO, Alcon, Bayer, Canon, HOYA, JFC, Kowa, Nikon, Nidek, Novartis, Otsuka, Pfizer, Santen, Senju, and Topcon outside the submitted work. Dr. Koizumi reported grants from JSPS KAKENHI (Grant Number JP21K09746); personal fees from Novartis, Alcon, Bayer, Canon, Senju, Santen, Kowa, HOYA, AMO, Otsuka, Pfizer, Allergan, Bausch & Lomb, JFC, Nidek, Topcon, Abbvie, TOMEY, Sumitomo Dainippon Pharma, Chugai, and SANOFI outside the submitted work.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamashiro, T., Tanaka, K., Itagaki, K. et al. Subfoveal choroidal thickness after brolucizumab therapy for neovascular age-related macular degeneration: a short-term multicenter study. Graefes Arch Clin Exp Ophthalmol 260, 1857–1865 (2022). https://doi.org/10.1007/s00417-021-05517-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-021-05517-1

Keywords

Navigation