Skip to main content

Advertisement

Log in

Epo inhibits the fibrosis and migration of Müller glial cells induced by TGF-β and high glucose

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

In proliferative diabetic retinopathy (PDR), Müller glial cells (MGCs) acquire migratory ability and exhibit a fibroblast-like phenotype. These activated MGCs contribute to the formation of epiretinal membrane, which will stretch the retina, and cause retinal detachment and vitreous hemorrhage. Erythropoietin (Epo) is now found effective in ameliorating renal fibrosis by inhibiting epithelial-to-mesenchymal transition of tubular epithelial cells. This study is undertaken to determine whether Epo has an effect in inhibiting MGCs activation to attenuate epiretinal membrane formation in PDR.

Method

MIO-M1 cell line was used in this study. As a pilot test to determine the most efficient treatment time and concentration of Epo, levels of connective tissue growth factor (CTGF) and transforming growth factor-β (TGF-β) were measured by real-time PCR, after treatment with Epo on MGCs cultured in high glucose. MGCs were cultured in high glucose and normal glucose for 2 days, with or without TGF-β as a pro-fibrogenic cytokine. Epo was introduced at the same time. Immunofluorescence targeting α-smooth muscle actin (α-SMA), fibronectin, and glial fibrillary acidic protein (GFAP) was performed to explore the cell phenotype. Matrix metalloproteinase 9 (MMP9) mRNA level was detected by real-time PCR. Protein levels of CTGF and cytoskeletal proteins like α-SMA and fibronectin were measured by enzyme-linked immunosorbent assay (ELISA) and Western blot respectively. Wound-healing assay was applied to evaluate the migratory ability of MGCs, and actin-tracker green was used to draw the structure of F-actin in MGCs.

Results

After being seeded into high-glucose medium containing TGF-β, MGCs expressed a larger amount of MMP9 mRNA as well as α-SMA, fibronectin at protein level. They secreted more CTGF, and their F-actin reorganized in a parallel manner and showed a stronger ability to migrate. In addition, these changes, including mRNA and protein expression, F-actin assembling, and cell migration, could be attenuated significantly by Epo treatment.

Conclusion

High glucose together with TGF-β promote MGCs to exhibit a fibroblast-like phenotype and develop a greater migratory ability. These changes can be inhibited by Epo, which therefore may contribute to the controlling of epiretinal membrane formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heng LZ, Comyn O, Peto T, Tadros C, Ng E, Sivaprasad S, Hykin PG (2013) Diabetic retinopathy: pathogenesis, clinical grading, management and future developments. Diabet Med 30(6):640–650. doi:10.1111/dme.12089

    Article  CAS  PubMed  Google Scholar 

  2. Campochiaro PA (2013) Ocular neovascularization. J Mol Med (Berl) 91(3):311–321. doi:10.1007/s00109-013-0993-5

    Article  CAS  Google Scholar 

  3. Walshe R, Esser P, Wiedemann P, Heimann K (1992) Proliferative retinal diseases: myofibroblasts cause chronic vitreoretinal traction. Br J Ophthalmol 76(9):550–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abu El-Asrar AM, De Hertogh G, van den Eynde K, Alam K, Van Raemdonck K, Opdenakker G, Van Damme J, Geboes K, Struyf S (2015) Myofibroblasts in proliferative diabetic retinopathy can originate from infiltrating fibrocytes and through endothelial-to-mesenchymal transition (EndoMT). Exp Eye Res 132:179–189. doi:10.1016/j.exer.2015.01.023

    Article  CAS  PubMed  Google Scholar 

  5. Guidry C (2005) The role of Muller cells in fibrocontractive retinal disorders. Prog Retin Eye Res 24(1):75–86. doi:10.1016/j.preteyeres.2004.07.001

    Article  CAS  PubMed  Google Scholar 

  6. Guidry C, King JL, Mason JO 3rd (2009) Fibrocontractive Muller cell phenotypes in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 50(4):1929–1939. doi:10.1167/iovs.08-2475

    Article  PubMed  Google Scholar 

  7. King JL, Mason JO 3rd, Cartner SC, Guidry C (2011) The influence of alloxan-induced diabetes on Muller cell contraction-promoting activities in vitreous. Invest Ophthalmol Vis Sci 52(10):7485–7491. doi:10.1167/iovs.11-7781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. King JL, Guidry C (2012) Vitreous IGFBP-3 effects on Muller cell proliferation and tractional force generation. Invest Ophthalmol Vis Sci 53(1):93–99. doi:10.1167/iovs.11-8683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Friedlander M (2007) Fibrosis and diseases of the eye. J Clin Invest 117(3):576–586. doi:10.1172/jci31030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guidry C (1997) Tractional force generation by porcine Muller cells. Development and differential stimulation by growth factors. Invest Ophthalmol Vis Sci 38(2):456–468

    CAS  PubMed  Google Scholar 

  11. Guidry C, Bradley KM, King JL (2003) Tractional force generation by human Müller cells: growth factor responsiveness and integrin receptor involvement. Invest Ophthalmol Vis Sci 44(3):1355–1363

    Article  PubMed  Google Scholar 

  12. Sramek SJ, Wallow IH, Stevens TS, Nork TM (1989) Immunostaining of preretinal membranes for actin, fibronectin, and glial fibrillary acidic protein. Ophthalmology 96(6):835–841

    Article  CAS  PubMed  Google Scholar 

  13. Mizutani M, Gerhardinger C, Lorenzi M (1998) Muller cell changes in human diabetic retinopathy. Diabetes 47(3):445–449

    Article  CAS  PubMed  Google Scholar 

  14. Chu Y, Alder VA, Humphrey MF, Constable IJ (1999) Localization of IgG in the normal and dystrophic rat retina after laser lesions. Aust N Z J Ophthalmol 27(2):117–125

    Article  CAS  PubMed  Google Scholar 

  15. Kodal H, Weick M, Moll V, Biedermann B, Reichenbach A, Bringmann A (2000) Involvement of calcium-activated potassium channels in the regulation of DNA synthesis in cultured Muller glial cells. Invest Ophthalmol Vis Sci 41(13):4262–4267

    CAS  PubMed  Google Scholar 

  16. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Muller cells in the healthy and diseased retina. Prog Retin Eye Res 25(4):397–424. doi:10.1016/j.preteyeres.2006.05.003

    Article  CAS  PubMed  Google Scholar 

  17. Schuster SJ, Koury ST, Bohrer M, Salceda S, Caro J (1992) Cellular sites of extrarenal and renal erythropoietin production in anaemic rats. Br J Haematol 81(2):153–159

    Article  CAS  PubMed  Google Scholar 

  18. Erbayraktar S, Yilmaz O, Gokmen N, Brines M (2003) Erythropoietin is a multifunctional tissue-protective cytokine. Curr Hematol Rep 2(6):465–470

    PubMed  Google Scholar 

  19. Hernandez C, Fonollosa A, Garcia-Ramirez M, Higuera M, Catalan R, Miralles A, Garcia-Arumi J, Simo R (2006) Erythropoietin is expressed in the human retina and it is highly elevated in the vitreous fluid of patients with diabetic macular edema. Diabetes Care 29(9):2028–2033. doi:10.2337/dc06-0556

    Article  PubMed  Google Scholar 

  20. Marti HH (2004) Erythropoietin and the hypoxic brain. J Exp Biol 207(Pt 18):3233–3242. doi:10.1242/jeb.01049

    Article  CAS  PubMed  Google Scholar 

  21. Garcia-Ramirez M, Hernandez C, Simo R (2008) Expression of erythropoietin and its receptor in the human retina: a comparative study of diabetic and nondiabetic subjects. Diabetes Care 31(6):1189–1194. doi:10.2337/dc07-2075

    Article  PubMed  Google Scholar 

  22. Villa P, Bigini P, Mennini T, Agnello D, Laragione T, Cagnotto A, Viviani B, Marinovich M, Cerami A, Coleman TR, Brines M, Ghezzi P (2003) Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med 198(6):971–975. doi:10.1084/jem.20021067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hernandez C, Simo R (2012) Erythropoietin produced by the retina: its role in physiology and diabetic retinopathy. Endocrine 41(2):220–226. doi:10.1007/s12020-011-9579-6

    Article  CAS  PubMed  Google Scholar 

  24. Luo W, Hu L, Wang F (2015) The protective effect of erythropoietin on the retina. Ophthalmic Res 53(2):74–81. doi:10.1159/000369885

    CAS  PubMed  Google Scholar 

  25. Hu LM, Luo Y, Zhang J, Lei X, Shen J, Wu Y, Qin M, Unver YB, Zhong Y, Xu GT, Li W (2011) EPO reduces reactive gliosis and stimulates neurotrophin expression in Muller cells. Front Biosci (Elite Ed) 3:1541–1555

    Google Scholar 

  26. Imamura R, Isaka Y, Sandoval RM, Ichimaru N, Abe T, Okumi M, Yazawa K, Kitamura H, Kaimori J, Nonomura N, Rakugi H, Molitoris BA, Takahara S (2012) A nonerythropoietic derivative of erythropoietin inhibits tubulointerstitial fibrosis in remnant kidney. Clin Exp Nephrol 16(6):852–862. doi:10.1007/s10157-012-0647-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen CL, Chou KJ, Lee PT, Chen YS, Chang TY, Hsu CY, Huang WC, Chung HM, Fang HC (2010) Erythropoietin suppresses epithelial to mesenchymal transition and intercepts Smad signal transduction through a MEK-dependent mechanism in pig kidney (LLC-PK1) cell lines. Exp Cell Res 316(7):1109–1118. doi:10.1016/j.yexcr.2010.02.022

    Article  CAS  PubMed  Google Scholar 

  28. Boulton M, Gregor Z, McLeod D, Charteris D, Jarvis-Evans J, Moriarty P, Khaliq A, Foreman D, Allamby D, Bardsley B (1997) Intravitreal growth factors in proliferative diabetic retinopathy: correlation with neovascular activity and glycaemic management. Br J Ophthalmol 81(3):228–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xie Z, Chen F, Wu X, Zhuang C, Zhu J, Wang J, Ji H, Wang Y, Hua X (2012) Safety and efficacy of intravitreal injection of recombinant erythropoietin for protection of photoreceptor cells in a rat model of retinal detachment. Eye (Lond) 26(1):144–152. doi:10.1038/eye.2011.254

    Article  CAS  Google Scholar 

  30. Zhang J, Wu Y, Jin Y, Ji F, Sinclair SH, Luo Y, Xu G, Lu L, Dai W, Yanoff M, Li W, Xu GT (2008) Intravitreal injection of erythropoietin protects both retinal vascular and neuronal cells in early diabetes. Invest Ophthalmol Vis Sci 49(2):732–742. doi:10.1167/iovs.07-0721

    Article  PubMed  Google Scholar 

  31. Lagreze WA, Feltgen N, Bach M, Jehle T (2009) Feasibility of intravitreal erythropoietin injections in humans. Br J Ophthalmol 93(12):1667–1671. doi:10.1136/bjo.2008.156794

    Article  CAS  PubMed  Google Scholar 

  32. Abu El-Asrar AM, Missotten L, Geboes K (2010) Expression of advanced glycation end products and related molecules in diabetic fibrovascular epiretinal membranes. Clin Experiment Ophthalmol 38(1):57–64. doi:10.1111/j.1442-9071.2010.02194.x, quiz 87

    Article  PubMed  Google Scholar 

  33. Abu El-Asrar AM, Van den Steen PE, Al-Amro SA, Missotten L, Opdenakker G, Geboes K (2007) Expression of angiogenic and fibrogenic factors in proliferative vitreoretinal disorders. Int Ophthalmol 27(1):11–22. doi:10.1007/s10792-007-9053-x

    Article  PubMed  Google Scholar 

  34. Twigg SM, Joly AH, Chen MM, Tsubaki J, Kim HS, Hwa V, Oh Y, Rosenfeld RG (2002) Connective tissue growth factor/IGF-binding protein-related protein-2 is a mediator in the induction of fibronectin by advanced glycosylation end-products in human dermal fibroblasts. Endocrinology 143(4):1260–1269. doi:10.1210/endo.143.4.8741

    Article  CAS  PubMed  Google Scholar 

  35. Cicha I, Goppelt-Struebe M (2009) Connective tissue growth factor: context-dependent functions and mechanisms of regulation. Biofactors 35(2):200–208. doi:10.1002/biof.30

    Article  CAS  PubMed  Google Scholar 

  36. Lipson KE, Wong C, Teng Y, Spong S (2012) CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair 5(Suppl 1):S24. doi:10.1186/1755-1536-5-s1-s24

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hinton DR, Spee C, He S, Weitz S, Usinger W, LaBree L, Oliver N, Lim JI (2004) Accumulation of NH2-terminal fragment of connective tissue growth factor in the vitreous of patients with proliferative diabetic retinopathy. Diabetes Care 27(3):758–764

    Article  CAS  PubMed  Google Scholar 

  38. Winkler JL, Kedees MH, Guz Y, Teitelman G (2012) Inhibition of connective tissue growth factor by small interfering ribonucleic acid prevents increase in extracellular matrix molecules in a rodent model of diabetic retinopathy. Mol Vis 18:874–886

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Klaassen I, van Geest RJ, Kuiper EJ, van Noorden CJ, Schlingemann RO (2015) The role of CTGF in diabetic retinopathy. Exp Eye Res 133:37–48. doi:10.1016/j.exer.2014.10.016

    Article  CAS  PubMed  Google Scholar 

  40. Leask A, Abraham DJ (2003) The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem Cell Biol 81(6):355–363. doi:10.1139/o03-069

    Article  CAS  PubMed  Google Scholar 

  41. Chintala H, Liu H, Parmar R, Kamalska M, Kim YJ, Lovett D, Grant MB, Chaqour B (2012) Connective tissue growth factor regulates retinal neovascularization through p53 protein-dependent transactivation of the matrix metalloproteinase (MMP)-2 gene. J Biol Chem 287(48):40570–40585. doi:10.1074/jbc.M112.386565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Grotendorst GR, Duncan MR (2005) Individual domains of connective tissue growth factor regulate fibroblast proliferation and myofibroblast differentiation. Faseb J 19(7):729–738. doi:10.1096/fj.04-3217com

    Article  CAS  PubMed  Google Scholar 

  43. Zhang X, Feng Z, Li C, Zheng Y (2012) Morphological and migratory alterations in retinal Muller cells during early stages of hypoxia and oxidative stress. Neural Regen Res 7(1):31–35. doi:10.3969/j.issn.1673-5374.2012.01.005

    PubMed  PubMed Central  Google Scholar 

  44. Brozzi F, Arcuri C, Giambanco I, Donato R (2009) S100B protein regulates astrocyte shape and migration via interaction with Src Kinase: implications for astrocyte development, activation, and tumor growth. J Biol Chem 284(13):8797–8811. doi:10.1074/jbc.M805897200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Limb GA, Daniels JT, Pleass R, Charteris DG, Luthert PJ, Khaw PT (2002) Differential expression of matrix metalloproteinases 2 and 9 by glial Muller cells: response to soluble and extracellular matrix-bound tumor necrosis factor-alpha. Am J Pathol 160(5):1847–1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barcelona PF, Jaldin-Fincati JR, Sanchez MC, Chiabrando GA (2013) Activated alpha2-macroglobulin induces Muller glial cell migration by regulating MT1-MMP activity through LRP1. Faseb J 27(8):3181–3197. doi:10.1096/fj.12-221598

    Article  CAS  PubMed  Google Scholar 

  47. Noda K, Ishida S, Inoue M, Obata K, Oguchi Y, Okada Y, Ikeda E (2003) Production and activation of matrix metalloproteinase-2 in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 44(5):2163–2170

    Article  PubMed  Google Scholar 

  48. Wiercinska E, Naber HP, Pardali E, van der Pluijm G, van Dam H, ten Dijke P (2011) The TGF-beta/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system. Breast Cancer Res Treat 128(3):657–666. doi:10.1007/s10549-010-1147-x

    Article  CAS  PubMed  Google Scholar 

  49. Mo N, Li ZQ, Li J, Cao YD (2012) Curcumin inhibits TGF-beta1-induced MMP-9 and invasion through ERK and Smad signaling in breast cancer MDA- MB-231 cells. Asian Pac J Cancer Prev 13(11):5709–5714

    Article  PubMed  Google Scholar 

  50. Zhang H, Wang ZW, Wu HB, Li Z, Li LC, Hu XP, Ren ZL, Li BJ, Hu ZP (2013) Transforming growth factor-beta1 induces matrix metalloproteinase-9 expression in rat vascular smooth muscle cells via ROS-dependent ERK-NF-kappaB pathways. Mol Cell Biochem 375(1–2):11–21. doi:10.1007/s11010-012-1512-7

    CAS  PubMed  Google Scholar 

  51. Zhu J, Nguyen D, Ouyang H, Zhang XH, Chen XM, Zhang K (2013) Inhibition of RhoA/Rho-kinase pathway suppresses the expression of extracellular matrix induced by CTGF or TGF-beta in ARPE-19. Int J Ophthalmol 6(1):8–14. doi:10.3980/j.issn.2222-3959.2013.01.02

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tsai HC, Su HL, Huang CY, Fong YC, Hsu CJ, Tang CH (2014) CTGF increases matrix metalloproteinases expression and subsequently promotes tumor metastasis in human osteosarcoma through down-regulating miR-519d. Oncotarget 5(11):3800–3812

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chen X, Guo Z, Wang P, Xu M (2014) Erythropoietin modulates imbalance of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in doxorubicin-induced cardiotoxicity. Heart Lung Circ 23(8):772–777. doi:10.1016/j.hlc.2014.02.015

    Article  PubMed  Google Scholar 

  54. Madro A, Kurzepa J, Czechowska G, Slomka M, Celinski K, Szymonik-Lesiuk S (2009) Erythropoietin inhibits liver gelatinases during galactosamine-induced hepatic damage in rats. Pharmacol Rep 61(5):917–923

    Article  CAS  PubMed  Google Scholar 

  55. Lei X, Zhang J, Shen J, Hu LM, Wu Y, Mou L, Xu G, Li W, Xu GT (2011) EPO attenuates inflammatory cytokines by Muller cells in diabetic retinopathy. Front Biosci (Elite Ed) 3:201–211

    Article  Google Scholar 

  56. Park SL, Won SY, Song JH, Kambe T, Nagao M, Kim WJ, Moon SK (2015) EPO gene expression promotes proliferation, migration and invasion via the p38MAPK/AP-1/MMP-9 pathway by p21WAF1 expression in vascular smooth muscle cells. Cell Signal 27(3):470–478. doi:10.1016/j.cellsig.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  57. Park SL, Won SY, Song JH, Kim WJ, Moon SK (2014) EPO gene expression induces the proliferation, migration and invasion of bladder cancer cells through the p21WAF1mediated ERK1/2/NF-kappaB/MMP-9 pathway. Oncol Rep 32(5):2207–2214. doi:10.3892/or.2014.3428

    CAS  PubMed  Google Scholar 

  58. Spiering D, Hodgson L (2011) Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adh Migr 5(2):170–180

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tsapara A, Luthert P, Greenwood J, Hill CS, Matter K, Balda MS (2010) The RhoA activator GEF-H1/Lfc is a transforming growth factor-beta target gene and effector that regulates alpha-smooth muscle actin expression and cell migration. Mol Biol Cell 21(6):860–870. doi:10.1091/mbc.E09-07-0567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Szczur K, Xu H, Atkinson S, Zheng Y, Filippi MD (2006) Rho GTPase CDC42 regulates directionality and random movement via distinct MAPK pathways in neutrophils. Blood 108(13):4205–4213. doi:10.1182/blood-2006-03-013789

    Article  CAS  PubMed  Google Scholar 

  61. Blajecka K, Marinov M, Leitner L, Uth K, Posern G, Arcaro A (2012) Phosphoinositide 3-kinase C2beta regulates RhoA and the actin cytoskeleton through an interaction with Dbl. PLoS One 7(9), e44945. doi:10.1371/journal.pone.0044945

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhang LJ, Tao BB, Wang MJ, Jin HM, Zhu YC (2012) PI3K p110alpha isoform-dependent Rho GTPase Rac1 activation mediates H2S-promoted endothelial cell migration via actin cytoskeleton reorganization. PLoS One 7(9), e44590. doi:10.1371/journal.pone.0044590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lin Y, Rao J, Zha XL, Xu H (2013) Angiopoietin-like 3 induces podocyte F-actin rearrangement through integrin alpha(V)beta(3)/FAK/PI3K pathway-mediated Rac1 activation. Biomed Res Int 2013:135608. doi:10.1155/2013/135608

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank H Li and Ch Sun for their assistance throughout the study and JF Zhang for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wang.

Ethics declarations

Funding

The National Nature Science Foundation of China provided financial support in the form of the National Nature Science Funding (Grant No.81200693).

The sponsor had no role in the design or conduct of this research.

Conflict of Interest

All authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Wentao Luo and Liumei Hu contributed equally to the work presented here and should therefore be regarded as equal authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(JPG 7.93 mb)

Supplementary Fig. 2

(JPG 416 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Hu, L., Li, W. et al. Epo inhibits the fibrosis and migration of Müller glial cells induced by TGF-β and high glucose. Graefes Arch Clin Exp Ophthalmol 254, 881–890 (2016). https://doi.org/10.1007/s00417-016-3290-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-016-3290-5

Keywords

Navigation