Skip to main content
Log in

BAG3 protects against hyperthermic stress by modulating NF-κB and ERK activities in human retinoblastoma cells

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

BCL2-associated athanogene 3 (BAG3), a co-chaperone of HSP70, is a cytoprotective and anti-apoptotic protein that acts against various stresses, including heat stress. Here, we examined the effect of BAG3 on the sensitivity of human retinoblastoma cells to hyperthermia (HT).

Methods

We examined the effects of BAG3 knockdown on the sensitivity of Y79 and WERI-Rb-1cells to HT (44 °C, 1 h) by evaluating apoptosis and cell proliferation using western blotting, real-time quantitative PCR (qPCR), flow cytometry, and a WST-8 assay kit. Furthermore, we examined the effects of activating nuclear factor-kappa B (NF-κB) and extracellular signal-regulated kinase (ERK) using western blotting and real time qPCR.

Results

HT induced considerable apoptosis along with the activation of caspase-3 and chromatin condensation. The sensitivity of Y79 and WERI-Rb-1 cells to HT was significantly enhanced by BAG3 knockdown. Compared to HT alone, the combination of BAG3 knockdown and HT reduced phosphorylation of the inhibitors of kappa B α (IκBα) and p65, a subunit of NF-κB, and degraded IκB kinase γ (IKKγ) during the recovery period after HT. Furthermore, BAG3 knockdown increased the HT-induced phosphorylation of ERK after HT treatment, and the ERK inhibitor U0126 significantly improved the viability of the cells treated with a combination of BAG3 knockdown and HT.

Conclusions

The silencing of BAG3 seems to enhance the effects of HT, at least in part, by maintaining HT-induced inactivity of NF-κB and the phosphorylation of ERK. These findings indicate that BAG3 may be a potential molecular target for modifying the outcomes of HT in retinoblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. MacCarthy A, Draper GJ, Steliarova-Foucher E, Kingston JE (2006) Retinoblastoma incidence and survival in European children (1978–1997). Report from the Automated Childhood Cancer Information System project. Eur J Cancer 42:2092–2102

    Article  CAS  PubMed  Google Scholar 

  2. Classon M, Harlow E (2002) The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2:910–917

    Article  CAS  PubMed  Google Scholar 

  3. Lin P, O'Brien JM (2009) Frontiers in the management of retinoblastoma. Am J Ophthalmol 148:192–198

    Article  CAS  PubMed  Google Scholar 

  4. Shields CL, Lally SE, Leahey AM, Jabbour PM, Caywood EH, Schwendeman R, Shields JA (2014) Targeted retinoblastoma management: when to use intravenous, intra-arterial, periocular, and intravitreal chemotherapy. Curr Opin Ophthalmol 5:374–385

    Article  Google Scholar 

  5. Shields CL, De Potter P, Himelstein BP, Shields JA, Meadows AT, Maris JM (1996) Chemoreduction in the initial management of intraocular retinoblastoma. Arch Ophthalmol 114:1330–1338

    Article  CAS  PubMed  Google Scholar 

  6. Shields CL, Shields JA, Needle M, de Potter P, Kheterpal S, Hamada A, Meadows AT (1997) Combined chemoreduction and adjuvant treatment for intraocular retinoblastoma. Ophthalmology 104:2101–2111

    Article  CAS  PubMed  Google Scholar 

  7. Inomata M, Kaneko A, Kunimoto T, Saijo N (2002) In vitro thermo- and thermochemo-sensitivity of retinoblastoma cells from surgical specimens. Int J Hyperthermia 18:50–61

    Article  CAS  PubMed  Google Scholar 

  8. Choi EK, Park SR, Lee JH, Chung HS, Ahn HE, Rhee YH, Lim BU, Park HJ (2003) Induction of apoptosis by carboplatin and hyperthermia alone or combined in WERI human retinoblastoma cells. Int J Hyperth 19:431–443

    Article  CAS  Google Scholar 

  9. Abramson DH, Schefler AC (2004) Transpupillary thermotherapy as initial treatment for small intraocular retinoblastoma: technique and predictors of success. Ophthalmology 111:984–991

    Article  PubMed  Google Scholar 

  10. Shields CL, Santos MC, Diniz W, Gündüz K, Mercado G, Cater JR, Shields JA (1999) Thermotherapy for retinoblastoma. Arch Ophthalmol 117:885–893

    Article  CAS  PubMed  Google Scholar 

  11. Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Ann Rev Genet 27:437–496

    Article  CAS  PubMed  Google Scholar 

  12. Ohtsuka K, Hata M (2000) Molecular chaperone function of mammalian Hsp70 and Hsp40- A review. Int J Hyperth 16:231–245

    Article  CAS  Google Scholar 

  13. Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006) Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5:2592–2601

    Article  CAS  PubMed  Google Scholar 

  14. Takayama S, Xie Z, Reed JC (1999) An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J Biol Chem 274:781–786

    Article  CAS  PubMed  Google Scholar 

  15. Rosati A, Ammirante M, Gentilella A, Basile A, Festa M, Pascale M, Marzullo L, Melisario MA, Tosco A, Franceschelli S, Moltedo O, Paqliuca G, Lerose R, Turco MC (2007) Apoptosis inhibition in cancer cells: a novel molecular pathway that involves BAG3 protein. Int J Biochem Cell Biol 39:1337–1342

    Article  CAS  PubMed  Google Scholar 

  16. Franceschelli S, Rosati A, Lerose R, De Nicola S, Turco MC, Pascale M (2008) Bag3 gene expression is regulated by heat shock factor 1. J Cell Physiol 215:575–577

    Article  CAS  PubMed  Google Scholar 

  17. Liao Q, Ozawa F, Friess H, Zimmermann A, Takayama S, Reed JC, Kleeff J, Büchler MW (2001) The anti-apoptotic protein BAG-3 is overexpressed in pancreatic cancer and induced by heat stress in pancreatic cancer cell lines. FEBS Lett 503:151–157

    Article  CAS  PubMed  Google Scholar 

  18. Kariya A, Tabuchi Y, Yunoki T, Kondo T (2013) Identification of common gene networks responsive to mild hyperthermia in human cancer cells. Int J Mol Med 32:195–202

    CAS  PubMed  Google Scholar 

  19. Chiappetta G, Ammirante M, Basile A, Rosati A, Festa M, Monaco M, Vuttariello E, Pasquinelli R, Arra C, Zerilli M, Todaro M, Stassi G, Pezzullo L, Gentilella A, Tosco A, Pascale M, Marzullo L, Belisario MA, Turco MC, Leone A (2007) The antiapoptotic protein BAG3 is expressed in thyroid carcinomas and modulates apoptosis mediated by tumor necrosis factor-related apoptosis-inducing ligand. J Clin Endocrinol Metab 92:1159–1163

    Article  CAS  PubMed  Google Scholar 

  20. Staibano S, Mascolo M, Di Benedetto M, Vecchione ML, Ilardi G, Di Lorenzo G, Autorino R, Salerno V, Morena A, Rocco A, Turco MC, Morelli E (2010) BAG3 protein delocalisation in prostate carcinoma. Tumor Biol 31:461–469

    Article  CAS  Google Scholar 

  21. Wang HQ, Liu BQ, Gao YY, Meng X, Guan Y, Zhang HY, Du ZX (2009) Inhibition of the JNK signalling pathway enhances proteasome inhibitor-induced apoptosis of kidney cancer cells by suppression of BAG3 expression. Br J Pharmacol 158:1405–1412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Festa M, Del Valle L, Khalili K, Franco R, Scognamiglio G, Graziano V, De Laurenzi V, Turco MC, Rosati A (2011) BAG3 protein is overexpressed in human glioblastoma and is a potential target for therapy. Am J Pathol 178:2504–2512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Suzuki M, Iwasaki M, Sugio A, Hishiya A, Tanaka R, Endo T, Takayama S, Saito T (2011) BAG3 (BCL2-associated athanogene 3) interacts with MMP-2 to positively regulate invasion by ovarian carcinoma cells. Cancer Lett 303:65–71

    Article  CAS  PubMed  Google Scholar 

  24. Liu P, Xu B, Li J, Lu H (2009) BAG3 gene silencing sensitizes leukemic cells to Bortezomib-induced apoptosis. FEBS Lett 583:401–406

    Article  CAS  PubMed  Google Scholar 

  25. Du ZX, Meng X, Zhang HY, Guan Y, Wang HQ (2008) Caspase-dependent cleavage of BAG3 in proteasome inhibitors-induced apoptosis in thyroid cancer cells. Biochem Biophys Res Commun 369:894–898

    Article  CAS  PubMed  Google Scholar 

  26. Wang HQ, Liu HM, Zhang HY, Guan Y, Du ZX (2007) Transcriptional upregulation of BAG3 upon proteasome inhibition. Biochem Biophys Res Commun 365:381–385

    Article  PubMed  Google Scholar 

  27. Yunoki T, Kariya A, Kondo T, Hayashi A, Tabuchi Y (2013) The combination of silencing BAG3 and inhibition of the JNK pathway enhances hyperthermia sensitivity in human oral squamous cell carcinoma cells. Cancer Lett 335:52–57

    Article  CAS  PubMed  Google Scholar 

  28. Chuma M, Sakamoto N, Nakai A, Hige S, Nakanishi M, Natsuizaka M, Suda G, Sho T, Hatanaka K, Matsuno Y, Yokoo H, Kamiyama T, Taketomi A, Fujii G, Tashiro K, Hikiba Y, Fujimoto M, Asaka M, Maeda S (2014) Heat shock factor 1 accelerates hepatocellular carcinoma development by activating nuclear factor-κB/mitogen-activated protein kinase. Carcinogenesis 35:272–281

    Article  CAS  PubMed  Google Scholar 

  29. Bassères DS, Baldwin AS (2006) Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene 25:6817–6830

    Article  PubMed  Google Scholar 

  30. Wang CY, Mayo MW, Baldwin AS Jr (1996) TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 274:784–787

    Article  CAS  PubMed  Google Scholar 

  31. Ammirante M, Rosati A, Arra C, Basile A, Falco A, Festa M, Pascale M, d'Avenia M, Marzullo L, Belisario MA, De Marco M, Barbieri A, Giudice A, Chiappetta G, Vuttariello E, Monaco M, Bonelli P, Salvatore G, Di Benedetto M, Deshmane SL, Khalili K, Turco MC, Leone A (2010) IKK{gamma} protein is a target of BAG3 regulatory activity in human tumor growth. Proc Natl Acad Sci U S A 107:7497–7502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Rosati A, Basile A, Falco A, Avenia M, Festa M, Graziano V, De Laurenzi V, Arra C, Pascale M, Turco MC (2012) Role of BAG3 protein in leukemia cell survival and response to therapy. Biochim Biophys Acta 1826:365–369

    CAS  PubMed  Google Scholar 

  33. Poulaki V, Mitsiades CS, Joussen AM, Lappas A, Kirchhof B, Mitsiades N (2002) Constitutive nuclear factor-kappaB activity is crucial for human retinoblastoma cell viability. Am J Pathol 161:2229–2240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Qu Y, Zhou F, Dai X, Wang H, Shi J, Zhang X, Wang Y, Wei W (2011) Clinicopathologic significances of nuclear expression of nuclear factor-κB transcription factors in retinoblastoma. J Clin Pathol 64:695–700

    Article  PubMed  Google Scholar 

  35. Falco A, Festa M, Basile A, Rosati A, Pascale M, Florenzano F, Nori SL, Nicolin V, Di Benedetto M, Vecchione ML, Arra C, Barbieri A, De Laurenzi V, Turco MC (2012) BAG3 controls angiogenesis through regulation of ERK phosphorylation. Oncogene 31:5153–5161

    Article  CAS  PubMed  Google Scholar 

  36. Xiao H, Cheng S, Tong R, Lv Z, Ding C, Du C, Xie H, Zhou L, Wu J, Zheng S (2014) BAG3 regulates epithelial-mesenchymal transition and angiogenesis in human hepatocellular carcinoma. Lab Invest 94:252–261

    Article  CAS  PubMed  Google Scholar 

  37. Aravindan N, Shanmugasundaram K, Natarajan M (2009) Hyperthermia induced NFkappaB mediated apoptosis in normal human monocytes. Mol Cell Biochem 327:29–37

    Article  CAS  PubMed  Google Scholar 

  38. Kokura S, Yoshida N, Ueda M, Imamoto E, Ishikawa T, Takagi T, Naito Y, Okanoue T, Yoshikawa T (2003) Hyperthermia enhances tumor necrosis factor alpha-induced apoptosis of a human gastric cancer cell line. Cancer Lett 201:89–96

    Article  CAS  PubMed  Google Scholar 

  39. Mattson D, Bradbury CM, Bisht KS, Curry HA, Spitz DR, Gius D (2004) Heat shock and the activation of AP-1 and inhibition of NF-kappa B DNA-binding activity: possible role of intracellular redox status. Int J Hyperth 20:224–233

    Article  CAS  Google Scholar 

  40. Pajonk F, van Ophoven A, McBride WH (2005) Hyperthermia-induced proteasome inhibition and loss of androgen receptor expression in human prostate cancer cells. Cancer Res 65:4836–4843

    Article  CAS  PubMed  Google Scholar 

  41. Yunoki T, Tabuchi Y, Hayashi A, Kondo T (2013) Inhibition of polo-like kinase 1 promotes hyperthermia sensitivity via inactivation of heat shock transcription factor 1 in human retinoblastoma cells. Invest Ophthalmol Vis Sci 54:8353–8363

    Article  CAS  PubMed  Google Scholar 

  42. Park JB (2011) Protective effects of veskamide, enferamide, becatamide, and oretamide on H2O2-induced apoptosis of PC-12 cells. Phytomedicine 18:843–847

    Article  CAS  PubMed  Google Scholar 

  43. Furusawa Y, Iizumi T, Fujiwara Y, Zhao QL, Tabuchi Y, Nomura T, Kondo T (2012) Inhibition of checkpoint kinase 1 abrogates G2/M checkpoint activation and promotes apoptosis under heat stress. Apoptosis 17:102–112

    Article  CAS  PubMed  Google Scholar 

  44. Tabuchi Y, Sugahara Y, Ikegame M, Suzuki N, Kitamura K, Kondo T (2013) Genes responsive to low-intensity pulsed ultrasound in MC3T3-E1 preosteoblast cells. Int J Mol Sci 14:22721–22740

    Article  PubMed Central  PubMed  Google Scholar 

  45. Xia H, Karasawa K, Hanyu N, Chang TC, Okamoto M, Kiguchi Y, Kawakami M, Itazawa T (2006) Hyperthermia combined with intra-thoracic chemotherapy and radiotherapy for malignant pleural mesothelioma. Int J Hyperth 22:613–621

    Article  CAS  Google Scholar 

  46. Aktas M, de Jong D, Nuyttens JJ, van der Zee J, Wielheesen DH, Batman E, Burger CW, Ansink AC (2007) Concomitant radiotherapy and hyperthermia for primary carcinoma of the vagina: a cohort study. Eur J Obstet Gynecol Reprod Biol 133:100–104

    Article  PubMed  Google Scholar 

  47. Boiani M, Daniel C, Liu X, Hogarty MD, Marnett LJ (2013) The stress protein BAG3 stabilizes Mcl-1 protein and promotes survival of cancer cells and resistance to antagonist ABT-737. J Biol Chem 288:6980–6990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Zhang Y, Wang JH, Lu Q, Wang YJ (2012) Bag3 promotes resistance to apoptosis through BCL-2 family members in non-small cell lung cancer. Oncol Rep 27:109–113

    PubMed  Google Scholar 

  49. Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18:2195–2224

    Article  CAS  PubMed  Google Scholar 

  50. Rubinfeld H, Seger R (2005) The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol 31:151–174

    Article  CAS  PubMed  Google Scholar 

  51. Park SW, Kim YI (2013) Triptolide induces apoptosis of PMA-treated THP-1 cells through activation of caspases, inhibition of NF-κB and activation of MAPKs. Int J Oncol 43:1169–1175

    CAS  PubMed  Google Scholar 

  52. Wang X, Martindale JL, Holbrook NJ (2000) Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem 275:39435–39443

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Scientific Research B (24310046) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Yunoki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yunoki, T., Tabuchi, Y., Hayashi, A. et al. BAG3 protects against hyperthermic stress by modulating NF-κB and ERK activities in human retinoblastoma cells. Graefes Arch Clin Exp Ophthalmol 253, 399–407 (2015). https://doi.org/10.1007/s00417-014-2874-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2874-1

Keywords

Navigation