Skip to main content

Advertisement

Log in

The retinal pigment epithelium (RPE) induces FasL and reduces iNOS and Cox2 in primary monocytes

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Retinal pigment epithelium (RPE) cells may alter the phenotype of monocytes by soluble factors that may be influenced by stimulation of the RPE. Since RPE cells carry the toll-like receptor-3 (TLR3) that detects and reacts to viral infection through binding of dsRNA we investigated the effects of RPE cells with or without TLR3 stimulation on blood-derived monocytes with respect to regulation of pro-/anti-inflammatory cytokines, anti-angiogenic factors and migratory properties.

Methods

Primary RPE cells were prepared from porcine eyes; monocytes were prepared from porcine blood. TLR3 activation was induced by polyinosinic:polycytidylic acid (Poly I:C). RPE cells were stimulated with Poly I:C in different concentrations for 24 hours and a cell culture supernatant was applied to the monocytes. Expression of CD14 and Fas ligand (FasL) was determined via flow cytometry. The expression of IL-6, IL-1ß, TNFα, Cox2, iNOS and IL-10 was determined via quantitative RT-PCR. Migration was determined using Boyden chamber experiments.

Results

The supernatant of RPE cells, irrespective of TLR3 activation, induced FasL expression in the monocytes. Expression of iNOS and Cox2 was reduced by RPE cells and the reduction of Cox2 but not if iNOS was lost under TLR3 activation. No induction of IL-6, IL-1ß, IL-10 or TNFα by the RPE was seen. TLR3-activated RPE cells induced monocyte migration.

Conclusion

RPE cells induce an upregulation of FasL and a downregulation of iNOS and Cox2 without upregulating inflammatory cytokines, possibly inducing an anti-angiogenic phenotype in the monocytes. This phenotype is still upheld after challenging RPE cells with dsRNA, mimicking a viral infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Espinosa-Heidmann DG, Suner IJ, Hernandez EP, Monroy D, Csaky KG, Cousins SW (2003) Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44:3586–3592

    Article  PubMed  Google Scholar 

  2. Apte RS, Richter J, Herndon J, Ferguson TA (2006) Macrophages inhibit neovascularization in a murine model of age-related macular degeneration. PLoS Med 3:e310

  3. Ferguson TA, Griffith TS (2006) A vision of cell death: Fas ligand and immune privilege 10 years later. Immunol Rev 213:228–238

    Article  CAS  PubMed  Google Scholar 

  4. Kelly J, Ali Khan A, Yin J, Ferguson TA, Apte RS (2007) Senescence regulates macrophage activation and angiogenic fate at sites of tissue injury in mice. J Clin Invest 117:3421–3426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  CAS  PubMed  Google Scholar 

  6. Detrick B, Hooks JJ (2010) Immune regulation in the retina. Immunol Res 47:153–161

    Article  CAS  PubMed  Google Scholar 

  7. Zamiri P, Masli S, Kitaichi N, Taylor AW, Streilein JW (2005) Thrombospondin plays a vital role in the immune privilege of the eye. Invest Ophthalmol Vis Sci 46:908–919

    Article  PubMed  Google Scholar 

  8. Sugita S, Futagami Y, Smith SB, Naggar H, Mochizuki M (2006) Retinal and ciliary body pigment epithelium suppress activation of T lymphocytes via transforming growth factor beta. Exp Eye Res 83:1459–1471

    Article  CAS  PubMed  Google Scholar 

  9. Vega JL, Saban D, Carrier Y, Masli S, Weiner HL (2010) Retinal pigment epithelial cells induce foxp3(+) regulatory T cells via membrane-bound TGF-ß. Ocul Immunol Inflamm 18:459–469

    Article  CAS  PubMed  Google Scholar 

  10. Gregerson DS, Heuss ND, Lew KL, McPherson SW, Ferrington DA (2007) Interaction of retinal pigmented epithelial cells and CD4 T cells leads to T-cellanergy. Invest Ophthalmol Vis Sci 48:4654–4663

  11. Ferguson TA, Apte RS (2008) Angiogenesis in eye disease: immunity gained or immunity lost? Semin Immunopathol 30:111–119

    Article  CAS  PubMed  Google Scholar 

  12. Jørgensen A, Wiencke AK, la Cour M, Kaestel CG, Madsen HO, Hamann S, Lui GM, Scherfig E, Prause JU, Svejgaard A, Odum N, Nissen MH, Röpke C (1998) Human retinal pigment epithelial cell-induced apoptosis in activated T cells. Invest Ophthalmol Vis Sci 39:1590–1599

    PubMed  Google Scholar 

  13. Huemer HP, Larcher C, Kirchebner W, Klingenschmid J, Göttinger W, Irschick EU (1996) Susceptibility of human retinal epithelial cells to different viruses. Graefes Arch Clin Exp Ophthalmol 234:177–185

    Article  CAS  PubMed  Google Scholar 

  14. Kaarniranta K, Salminen A (2009) Age-relatedmacular degeneration: activation of innate immunity system via pattern recognition receptors. J Mol Med 87:117–123

  15. Bian ZM, Elner SG, Yoshida A, Elner VM (2003) Human RPE-monocyte co-culture induces chemokine gene expression through activation of MAPK and NIK cascade. Exp Eye Res 76:573–583

    Article  CAS  PubMed  Google Scholar 

  16. Elner VM, Strieter RM, Elner SG, Baggiolini M, Lindley I, Kunkel SL (1990) Neutrophil chemotactic factor (IL-8) gene expression by cytokine-treated retinal pigment epithelial cells. Am J Pathol 136:745–750

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Elner SG, Yoshida A, Bian ZM, Kindezelskii AL, Petty HR, Elner VM (2003) Human RPE cell apoptosis induced by activated monocytes is mediated by caspase-3 activation. Trans Am Ophthalmol Soc 101:77–92

    PubMed Central  PubMed  Google Scholar 

  18. Cherepanoff S, McMenamin P, Gillies MC, Kettle E, Sarks SH (2010) Bruch’s membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br J Ophthalmol 94:918–925

    Article  CAS  PubMed  Google Scholar 

  19. Jerdan JA, Pepose JS, Michels RG, Hayashi H, de Bustros S, Sebag M, Glaser BM (1989) Proliferative vitreoretinopathy membranes. An immunohistochemical study. Ophthalmology 96:801–810

    Article  CAS  PubMed  Google Scholar 

  20. Yang P, de Vos AF, Kijlstra A (1997) Macrophages and MHC class II positive cells in the choroid during endotoxin induced uveitis. Br J Ophthalmol 81:396–401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lau CH, Taylor AW (2009) The immune privileged retina mediates an alternative activation of J774A.1 cells. Ocul Immunol Inflamm 17:380–389

    Article  CAS  PubMed  Google Scholar 

  22. Matsumoto M, Kikkawa S, Kohase M, Miyake K, Seya T (2002) Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signalling. Biochem Biophys Res Commun 293:1364–1369

  23. Doyle SE, O’Connell R, Vaidya SA, Chow EK, Yee K, Cheng G (2003) Toll-likereceptor 3 mediates a more potent antiviral response that Toll-likereceptor 4. J Immunol 170:3565–3571

  24. Kleinman ME, Kaneko H, Cho WG, Dridi S, Fowler BJ, Blandford AD, Albuquerque RJ, Hirano Y, Terasaki H, Kondo M, Fujita T, Ambati BK, Tarallo V, Gelfand BD, Bogdanovich S, Baffi JZ, Ambati J (2012) Short-interfering RNAs induce retinal degeneration via TLR3 and IRF3. Mol Ther 20:101–108

  25. McLeod DS, Grebe R, Bhutto I, Merges C, Baba T, Lutty GA (2009) Relationship between RPE and choriocapillaris in age-related macular degeneration. Invest Ophthalmol Vis Sci 50:4982–4991

    Article  PubMed  Google Scholar 

  26. Yang Z, Stratton C, Francis PJ, Kleinman ME, Tan PL, Gibbs D, Tong Z, Chen H, Constantine R, Yang X, Zeng J, Davey L, Ma X, Hau VS, Wang C, Harmon J, Buehler J, Pearson E, Patel S, Kaminoh Y, Watkins S, Luo L, Zabriskie NA, Bernstein PS, Cho W, Schwager A, Hinton DR, Klein ML, Hamon SC, Simmons E, Yu B, Campochiaro B, Sunness JS, Campochiaro P, Jorde L, Parmigiani G, Zack DJ, Katsanis N, Ambati J, Zhang K (2008) Toll-likereceptor 3 and geographic atrophy in age-related macular degeneration. N Engl J Med 359:1456–1463

  27. Cho Y, Wang JJ, Chew E, Ferris FL, Mitchell P, Chan CC, Tuo J (2009) Toll-like receptor polymorphisms and age-related macular degeneration: replication in three case–control samples. Invest Ophthalmol Vis Sci 50:5614–5618

    Article  PubMed Central  PubMed  Google Scholar 

  28. Zhou P, Fan L, Yu KD, Zhao MW, Li XX (2011) Toll-likereceptor 3 C1234T may protect against geographic atrophy through decreased dsRNA binding capacity. FASEB J 25:3489–3495

  29. Kumar MV, Nagineni CN, Chin MS, Hooks JJ, Detrick B (2004) Innate immunity in the retina: Toll-like receptor (TLR) signaling in human retina pigment epithelial cells. J Neuroimmunol 153:7–15

    Article  CAS  PubMed  Google Scholar 

  30. Ebihara N, Chen L, Tokura T, Ushio H, Iwatsu M, Murakami A (2007) Distinct functions between toll-like receptors 3 and 9 in retinal pigment epithelial cells. Ophthalmic Res 39:155–163

    Article  CAS  PubMed  Google Scholar 

  31. Klettner A, Koinzer S, Meyer T, Roider J (2013) Toll-like receptor 3 activation in retinal pigment epithelium cells – Mitogen-activated protein kinase pathways of cell death and vascular endothelial growth factor secretion. Acta Ophthalmol 91:e211–e218

  32. Klettner A, Roider J (2008) Comparison of bevacizumab, ranibizumab, and pegaptanib: efficiency and possible additional pathways. Invest Ophthalmol Vis Sci 49:4523–4527

    Article  PubMed  Google Scholar 

  33. Wiencke AK, Kiilgaard JF, Nicolini J, Bundgaard M, Röpke C, la Cour M (2003) Growth of cultured porcine retinal pigment epithelial cells. Acta Ophthalmol 81:170–176

    Article  Google Scholar 

  34. Berg C, Wilker S, Roider J, Klettner A (2013) Isolation of porcine monocyte population: a simple and efficient method. Vet Res Commun 37:239–241

    Article  PubMed  Google Scholar 

  35. Ziegler-Heitbrock HW, Appl B, Käfferlein E, Löffler T, Jahn-Henninger H, Gutensohn W, Nores JR, Mccullough K, Passlick B, Labeta MO et al (1994) The Antibody MY4 Recognizes CD14 on Porcine Monocytes and Macrophages. Scand J Immunol 40:509–514

    Article  CAS  PubMed  Google Scholar 

  36. Klettner A, Baumgrass R, Zhang Y, Fischer G, Bürger E, Herdegen T, Mielke K (2001) The neuroprotective actions of FK506 binding protein ligands: neuronal survival is triggered by de novo RNA synthesis, but is independent of inhibition of JNK and Calcineurin. Brain Res Mol Brain Res 97:21–31

    Article  CAS  PubMed  Google Scholar 

  37. Tang S, Lucius R, Wenck H, Gallinat S, Weise JM (2013) UV-mediated downregulation of the endocytic collagen receptor, Endo 180, contributes to accumulation of extracellular collagen fragments in photoaged skin. J Dermatol Sci 70:42–48

    Article  CAS  PubMed  Google Scholar 

  38. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR an the 2(−Delta Delta C (T)) method. Methods 25:402–408

  39. Liles WC, Kiener PA, Ledbetter JA, Aruffo A, Klebanoff SJ (1996) Differential expression of Fas (CD95) and Fas ligand on normal human phagocytes: implications for the regulation of apoptosis in neutrophils. J Exp Med 184:429–440

    Article  CAS  PubMed  Google Scholar 

  40. Brown SB, Savill J (1999) Phagocytosis triggers macrophage release of Fas ligand and induces apoptosis of bystander leukocytes. J Immunol 162:480–485

    CAS  PubMed  Google Scholar 

  41. Kaplan HJ, Leibole MA, Tezel T, Ferguson TA (1999) Fas ligand (CD95 ligand) controls angiogenesis beneath the retina. Nat Med 5:292–297

    Article  CAS  PubMed  Google Scholar 

  42. Davis MH, Eubanks JP, Powers MR (2003) Increased retinal neovascularization in Fas ligand-deficient mice. Invest Ophthalmol Vis Sci 44:3202–3210

    Article  Google Scholar 

  43. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270:1189–1192

    Article  CAS  PubMed  Google Scholar 

  44. Yoshida A, Elner SG, Bian ZM, Kindezelskii AL, Petty HR, Elner VM (2003) Activated monocytes induce human retinal pigment epithelial cell apoptosis through caspase-3 activation. Lab Investig 83:1117–1129

    Article  CAS  PubMed  Google Scholar 

  45. Esser P, Heimann K, Abts H, Fontana A, Weller M (1995) CD95 (Fas/APO-1) antibody-mediated apoptosis of human retinal pigment epithelial cells. Biochem Biophys Res Commun 213:1026–1034

    Article  CAS  PubMed  Google Scholar 

  46. Rosenbaum JT, O’Rourke L, Davies G, Wenger C, David L, Robertson JE (1987) Retinal pigment epithelial cells secrete substances that are chemotactic for monocytes. Curr Eye Res 6:793–800

    Article  CAS  PubMed  Google Scholar 

  47. Yoshida A, Elner SG, Bian ZM, Kunkel SL, Lukacs NW, Elner VM (2001) Thrombin regulates chemokine induction during human retinal pigment epithelial cell/monocyte interaction. Am J Pathol 159:1171–1180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Yang D, Elner SG, Chen X, Field MG, Petty HR, Elner VM (2011) MCP-1 activated monocytes induce apoptosis in human retinal pigment epithelium. Invest Ophthalmol Vis Sci 52:6026–6034

  49. Ando A, Yang A, Nambu H, Campochiaro PA (2002) Blockade of nitric-oxide synthase reduces choroidal neovascularization. Mol Pharmacol 62:539–544

    Article  CAS  PubMed  Google Scholar 

  50. Ando A, Yang A, Mori K, Yamada H, Yamada E, Takahashi K, Saikia J, Kim M, Melia M, Fishman M, Huang P, Campochiaro PA (2002) Nitric oxide is proangiogenic in the retina and choroid. J Cell Physiol 191:116–124

    Article  CAS  PubMed  Google Scholar 

  51. Houssier M, Raoul W, Lavalette S, Keller N, Guillonneau X, Baragatti B, Jonet L, Jeanny JC, Behar-Cohen F, Coceani F, Scherman D, Lachapelle P, Ong H, Chemtob S, Sennlaub F (2008) CD36 deficiency leads to choroidal involution via COX2 down-regulation in rodents. PLoS Med 5:e39

  52. Klettner A, Hamann T, Schlüter K, Lucius R, Roider J (2014) Retinal pigment epithelium cells alter the pro-inflammatory response of retinal microglia to TLR-3 stimulation. Acta Ophthalmol. doi:10.1111/aos.12472

    Google Scholar 

  53. Lassota N (2008) Clinical and histological aspects of CNV formation: studies in an animal model. Acta Ophthalmol 86:1–24

    Article  PubMed  Google Scholar 

  54. Sanchez I, Martin R, Ussa F, Fernandez-Bueno I (2011) The parameters of the porcine eyeball. Graefes Arch Clin Exp Ophthalmol 249:475–482

  55. Middleton S (2010) Porcine Ophthalmology. Vet Clin N Am Food Anim Pract 26:557–572

    Article  Google Scholar 

  56. Butler JE, Sun J, Wertz N, Sinkora M (2006) Antibody repertoire development in swine. Dev Comp Immunol 30:199–211

    Article  CAS  PubMed  Google Scholar 

  57. Yang P, Chen L, Zwart R, Kijlstra A (2002) Immune cells in the porcine retina: Distribution, characterization and morphological features. Invest Ophthalmol Vis Sci 43:1488–1492

    PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the German Ophthalmological Society. Data of this study has been presented at the ARVO meeting 2013. No conflict of interest exists regarding this study. Independently of this study, AK has received research funding and lecture fees and has acted as a consultant for Novartis Pharma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexa Klettner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hettich, C., Wilker, S., Mentlein, R. et al. The retinal pigment epithelium (RPE) induces FasL and reduces iNOS and Cox2 in primary monocytes. Graefes Arch Clin Exp Ophthalmol 252, 1747–1754 (2014). https://doi.org/10.1007/s00417-014-2742-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2742-z

Keywords

Navigation