Skip to main content

Advertisement

Log in

Free water imaging in Parkinson’s disease and atypical parkinsonian disorders

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Free water (FW)-corrected diffusion measures are more precise compared to standard diffusion measures. This study comprehensively evaluates FW and corrected diffusion metrics for whole brain white and deep gray matter (WM, GM) structures in patients with Parkinson’s disease (PD), progressive supranuclear palsy (PSP) and multiple system atrophy (MSA) and attempts to ascertain the probable patterns of WM abnormalities.

Method

Diffusion MRI was acquired for subjects with PD (n = 133), MSA (n = 25), PSP (n = 30) and matched healthy controls (HC) (n = 99, n = 24, n = 12). Diffusion metrics of FA, MD, AD, RD were generated and FW, corrected FA maps were calculated using a bi-tensor model. TBSS was carried out at 5000 permutations with significance at p < 0.05. For GM, diffusivity maps were extracted from the basal ganglia, and analyzed at an FDR with p < 0.05.

Results

Compared to HC, PD showed focal changes in FW. MSA showed changes in the cerebellum and brainstem, and PSP showed increase in FW involving supratentorial WM and midbrain. All three showed increased substantia nigra FW. MSA, PSP demonstrated increased FW in bilateral putamen. PD showed increased FW in left GP externa, and bilateral thalamus. Compared to HC, MSA had increased FW in bilateral GP interna, and left thalamic. PSP had an additional increase in FW of the right GP externa, right GP interna, and bilateral thalamus.

Conclusion

The present study demonstrated definitive differences in the patterns of FW alterations between PD and atypical parkinsonian disorders suggesting the possibility of whole brain FW maps being used as markers for diagnosis of these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data will be shared upon reasonable request.

References

  1. Williams DR, Litvan I (2013) Parkinsonian syndromes. Continuum (Minneap Minn) 19:1189–1212

    PubMed  Google Scholar 

  2. Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ (2002) The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 125(Pt 4):861–870

    Article  PubMed  Google Scholar 

  3. Broski SM, Hunt CH, Johnson GB, Morreale RF, Lowe VJ, Peller PJ (2014) Structural and functional imaging in Parkinsonian Syndromes. Radiographics 34(5):1273–1292

    Article  PubMed  Google Scholar 

  4. Bajaj S, Krismer F, Palma J-A et al (2017) Diffusion-weighted MRI distinguishes Parkinson disease from the parkinsonian variant of multiple system atrophy: a systematic review and meta-analysis. PLoS One 12(12):e0189897

    Article  PubMed  PubMed Central  Google Scholar 

  5. Krismer F, Beliveau V, Seppi K et al (2021) Automated analysis of diffusion-weighted magnetic resonance imaging for the differential diagnosis of multiple system atrophy from Parkinson’s disease. Mov Disord 36(1):241–245

    Article  PubMed  Google Scholar 

  6. Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y (2009) Free water elimination and mapping from diffusion MRI. Magn Reson Med 62(3):717–730

    Article  PubMed  Google Scholar 

  7. Pierpaoli C, Jones D, editors (2004) Removing CSF contamination in brain DT-MRIs by using a two-compartment tensor model. Int Soc Magn Reson Med Meet

  8. Metzler-Baddeley C, O’Sullivan MJ, Bells S, Pasternak O, Jones DK (2012) How and how not to correct for CSF-contamination in diffusion MRI. Neuroimage 59(2):1394–1403

    Article  PubMed  Google Scholar 

  9. Pasternak O, Shenton ME, Westin C-F (2012) Estimation of extracellular volume from regularized multi-shell diffusion MRI. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012: 15th International Conference, Nice, France, October 1–5, 2012, Proceedings, Part II 15; Springer

  10. Hoy AR, Koay CG, Kecskemeti SR, Alexander AL (2014) Optimization of a free water elimination two-compartment model for diffusion tensor imaging. Neuroimage 103:323–333

    Article  PubMed  Google Scholar 

  11. Vijayakumari AA, Parker D, Osmanlioglu Y et al (2021) Free water volume fraction: an imaging biomarker to characterize moderate-to-severe traumatic brain injury. J Neurotrauma 38(19):2698–2705

    Article  PubMed  PubMed Central  Google Scholar 

  12. Carreira Figueiredo I, Borgan F, Pasternak O, Turkheimer FE, Howes OD (2022) White-matter free-water diffusion MRI in schizophrenia: a systematic review and meta-analysis. Neuropsychopharmacology 47(7):1413–1420

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang W, Xiao D, Mao Q, Xia H (2023) Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 8(1):267

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T (1996) Interleukin (IL)-1β, IL-2, IL-4, IL-6 and transforming growth factor-α levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 211(1):13–16

    Article  CAS  PubMed  Google Scholar 

  15. Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994) Tumor necrosis factor-α (TNF-α) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165(1–2):208–210

    Article  CAS  PubMed  Google Scholar 

  16. Menza M, Dobkin RD, Marin H et al (2010) The role of inflammatory cytokines in cognition and other non-motor symptoms of Parkinson’s disease. Psychosomatics 51(6):474–479

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lindqvist D, Hall S, Surova Y et al (2013) Cerebrospinal fluid inflammatory markers in Parkinson’s disease–associations with depression, fatigue, and cognitive impairment. Brain Behav Immun 33:183–189

    Article  CAS  PubMed  Google Scholar 

  18. van Olst L, Verhaege D, Franssen M et al (2020) Microglial activation arises after aggregation of phosphorylated-tau in a neuron-specific P301S tauopathy mouse model. Neurobiol Aging 89:89–98

    Article  PubMed  Google Scholar 

  19. Fernández-Botrán R, Ahmed Z, Crespo FA et al (2011) Cytokine expression and microglial activation in progressive supranuclear palsy. Parkinsonism Relat Disord 17(9):683–688

    Article  PubMed  PubMed Central  Google Scholar 

  20. Passamonti L, Rodríguez PV, Hong YT et al (2018) [11C] PK11195 binding in Alzheimer disease and progressive supranuclear palsy. Neurology 90(22):e1989–e1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Starhof C, Winge K, Heegaard N, Skogstrand K, Friis S, Hejl A (2018) Cerebrospinal fluid pro-inflammatory cytokines differentiate parkinsonian syndromes. J Neuroinflammation 15:1–7

    Article  Google Scholar 

  22. Ofori E, Pasternak O, Planetta PJ et al (2015) Increased free water in the substantia nigra of Parkinson’s disease: a single-site and multi-site study. Neurobiol Aging 36(2):1097–1104

    Article  CAS  PubMed  Google Scholar 

  23. Ofori E, Pasternak O, Planetta PJ et al (2015) Longitudinal changes in free-water within the substantia nigra of Parkinson’s disease. Brain 138(8):2322–2331

    Article  PubMed  PubMed Central  Google Scholar 

  24. Planetta PJ, Ofori E, Pasternak O et al (2016) Free-water imaging in Parkinson’s disease and atypical parkinsonism. Brain 139(2):495–508

    Article  PubMed  Google Scholar 

  25. Ofori E, Krismer F, Burciu RG et al (2017) Free water improves detection of changes in the substantia nigra in parkinsonism: A multisite study. Mov Disord 32(10):1457–1464

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ogawa T, Hatano T, Kamagata K et al (2021) White matter and nigral alterations in multiple system atrophy-parkinsonian type. NPJ Parkinson’s Disease. 7(1):96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andica C, Kamagata K, Hatano T et al (2019) Free-water imaging in white and gray matter in Parkinson’s disease. Cells 8(8):839

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hughes AJ, Daniel SE, Blankson S, Lees AJ (1993) A clinicopathologic study of 100 cases of Parkinson’s disease. Arch Neurol 50(2):140–148

    Article  CAS  PubMed  Google Scholar 

  29. Gilman S, Wenning GK, Low PA et al (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71(9):670–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Litvan I, Agid Y, Calne D et al (1996) Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 47(1):1–9

    Article  CAS  PubMed  Google Scholar 

  31. Prasad S, Stezin A, Lenka A et al (2018) 3D Neuromelanin-sensitive magnetic resonance imaging of the substantia nigra in Parkinson’s disease. Eur J Neurol. https://doi.org/10.1111/ene.13573

    Article  PubMed  Google Scholar 

  32. Safai A, Prasad S, Chougule T, Saini J, Pal PK, Ingalhalikar M (2020) Microstructural abnormalities of substantia nigra in Parkinson’s disease: A neuromelanin sensitive MRI atlas based study. Hum Brain Mapp 41(5):1323–1333

    Article  PubMed  Google Scholar 

  33. Shah A, Prasad S, Rastogi B et al (2018) Altered structural connectivity of the motor subnetwork in multiple system atrophy with cerebellar features. Eur Radiol. https://doi.org/10.1007/s00330-018-5874-4

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tupe-Waghmare P, Rajan A, Prasad S, Saini J, Pal PK, Ingalhalikar M (2021) Radiomics on routine T1-weighted MRI can delineate Parkinson’s disease from multiple system atrophy and progressive supranuclear palsy. Eur Radiol 31(11):8218–8227

    Article  PubMed  Google Scholar 

  35. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) Fsl. Neuroimage 62(2):782–790

    Article  PubMed  Google Scholar 

  36. Mitchell T, Archer DB, Chu WT et al (2019) Neurite orientation dispersion and density imaging (NODDI) and free-water imaging in Parkinsonism. Hum Brain Mapp 40(17):5094–5107

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mitchell T, Wilkes BJ, Archer DB, et al (2022) Advanced diffusion imaging to track progression in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. NeuroImage: Clinical. 34:103022

  38. McGeer PL, Itagaki S, Boyes BE, McGeer E (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38(8):1285–1285

    Article  CAS  PubMed  Google Scholar 

  39. Shimoji M, Pagan F, Healton EB, Mocchetti I (2009) CXCR4 and CXCL12 expression is increased in the nigro-striatal system of Parkinson’s disease. Neurotox Res 16:318–328

    Article  CAS  PubMed  Google Scholar 

  40. Brodacki B, Staszewski J, Toczyłowska B et al (2008) Serum interleukin (IL-2, IL-10, IL-6, IL-4), TNFα, and INFγ concentrations are elevated in patients with atypical and idiopathic parkinsonism. Neurosci Lett 441(2):158–162

    Article  CAS  PubMed  Google Scholar 

  41. Pereira JR, Dos Santos LV, Santos RMS et al (2016) IL-6 serum levels are elevated in Parkinson’s disease patients with fatigue compared to patients without fatigue. J Neurol Sci 370:153–156

    Article  CAS  PubMed  Google Scholar 

  42. Nicoletti A, Fagone P, Donzuso G et al (2011) Parkinson’s disease is associated with increased serum levels of macrophage migration inhibitory factor. Cytokine 55(2):165–167

    Article  CAS  PubMed  Google Scholar 

  43. Blum-Degena D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P (1995) Interleukin-1β and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 202(1–2):17–20

    Article  Google Scholar 

  44. Hall S, Janelidze S, Surova Y, Widner H, Zetterberg H, Hansson O (2018) Cerebrospinal fluid concentrations of inflammatory markers in Parkinson’s disease and atypical parkinsonian disorders. Sci Rep 8(1):13276

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ayton S, Hall S, Janelidze S et al (2022) The neuroinflammatory acute phase response in Parkinsonian-related disorders. Mov Disord 37(5):993–1003

    Article  CAS  PubMed  Google Scholar 

  46. Schwarz ST, Abaei M, Gontu V, Morgan PS, Bajaj N, Auer DP (2013) Diffusion tensor imaging of nigral degeneration in Parkinson’s disease: a region-of-interest and voxel-based study at 3 T and systematic review with meta-analysis. NeuroImage: Clinical 3:481–488

Download references

Acknowledgements

Shweta Prasad is currently supported by the DBT/ Wellcome Trust India Alliance Early Career Fellowship (IA/CPHE/21/1/505953).

Funding

Dept. of Biotechnology (DBT), Govt. of India (BT/PR14315/MED/30/474/2010); Indian Council of Medical Research (ICMR) (ICMR/003/304/2013/00694).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhura Ingalhalikar.

Ethics declarations

Conflicts of interest

None.

Ethical approval

An institutional ethical committee waiver was obtained to utilise previously acquired imaging in future studies (NIMHANS/IEC/2019-20).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, A., Prasad, S., Indoria, A. et al. Free water imaging in Parkinson’s disease and atypical parkinsonian disorders. J Neurol 271, 2521–2528 (2024). https://doi.org/10.1007/s00415-024-12184-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-024-12184-9

Keywords

Navigation