Skip to main content

Advertisement

Log in

Microvascular involvement in migraine: an optical coherence tomography angiography study

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to evaluate the microvasculature of the macula and the optic nerve in patients affected by migraine with aura (MA) and without aura (MO) by optical coherence tomography angiography (OCTA), comparing the findings with healthy controls (HC).

Methods

We collected data from ocular and orthotic examinations, including eye motility, intraocular pressure measurement, best-corrected visual acuity (BCVA) measurement, objective refraction measurement, fundus examination, macular and optic disk OCTA examination. All subjects were imaged with solix fullrange OCT. The following OCTA parameters were recorded: macular vessel density (VD), inside disc VD, peripapillary VD, disc whole image VD, fovea choriocapillaris VD, fovea VD, parafovea VD, peripapillary thickness, fovea thickness, parafovea thickness, macular full retinal thickness, and foveal avascular zone (FAZ) parameters. Clinical and demographical data about migraine patients were collected by a neurologist.

Results

We included 56 eyes from 28 patients with a diagnosis of MO, 32 eyes from 16 patients with a diagnosis of MA, and 32 eyes from 16 HC subjects. The FAZ area was 0.230 ± 0.099 mm2 in the MO group, 0.248 ± 0.091 mm2 in the MA group and 0.184 ± 0.061 mm2 in the control group. The FAZ area was significantly larger in the MA group than in the HC group (p = 0.007). The foveal choriocapillaris VD was significantly lower in MA patients (63.6 ± 2.49%) when compared with MO patients (65.27 ± 3.29%) (p = 0.02).

Conclusion

An impairment of retinal microcirculation can be detected in patients with MA, as demonstrated by the enlargement of FAZ. Moreover, the study of choroid circulation may reveal microvascular damage in patients with migraine with aura. OCTA is a useful non-invasive screening tool for the detection of microcirculatory disturbance in patients with migraine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Headache Classification Committee of the International Headache Society (IHS) (2018) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 38:1–211

  2. Aitchison RT, Kennedy GJ, Shu X, Mansfield DC, Kir R, Hui J, Shahani U (2022) Measuring the foveal avascular zone in diabetes: a study using optical coherence tomography angiography. J Diabetes Investig 13:668–676

    Article  CAS  PubMed  Google Scholar 

  3. Beversdorf D, Stommel E, Allen C, Stevens R, Lessell S (1997) Recurrent branch retinal infarcts in association with migraine. Headache 37:396–399

    Article  CAS  PubMed  Google Scholar 

  4. Bingöl Kızıltunç P, Atilla H (2021) Vascular changes with optical coherence tomography angiography during aura of migraine: a case report. Eur J Ophthalmol 31:NP54–NP57

    Article  PubMed  Google Scholar 

  5. Burch RC, Buse DC, Lipton RB (2019) Migraine: epidemiology, burden, and comorbidity. Neurol Clin 37:631–649

    Article  PubMed  Google Scholar 

  6. Chang MY, Phasukkijwatana N, Garrity S, Pineles SL, Rahimi M, Sarraf D, Johnston M, Charles A, Arnold AC (2017) Foveal and peripapillary vascular decrement in migraine with aura demonstrated by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58:5477–5484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Delaey C, Van De Voorde J (2000) Regulatory mechanisms in the retinal and choroidal circulation. Ophthalmic Res 32:249–256

    Article  CAS  PubMed  Google Scholar 

  8. Ferrari MD, Goadsby PJ, Burstein R, Kurth T, Ayata C, Charles A, Ashina M, van den Maagdenberg AMJM, Dodick DW (2022) Migraine. Nat Rev Dis Primers 8:2

    Article  PubMed  Google Scholar 

  9. Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S (2017) Pathophysiology of migraine: a disorder of sensory processing. Physiol Rev 97:553–622

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hamurcu MS, Gultekin BP, Koca S, Ece SD (2021) Evaluation of migraine patients with optical coherence tomography angiography. Int Ophthalmol 41:3929–3933

    Article  PubMed  Google Scholar 

  11. Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, Huang D (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20:4710–4725

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kara SA, Erdemoğlu AK, Karadeniz MY, Altinok D (2003) Color Doppler sonography of orbital and vertebral arteries in migraineurs without aura. J Clin Ultrasound 31:308–314

    Article  PubMed  Google Scholar 

  13. Kashani AH, Chen CL, Gahm JK, Zheng F, Richter GM, Rosenfeld PJ, Shi Y, Wang RK (2017) Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res 60:66–100

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kosinski M, Bayliss MS, Bjorner JB, Ware JE Jr, Garber WH, Batenhorst A, Cady R, Dahlöf CG, Dowson A, Tepper S (2003) A six-item short-form survey for measuring headache impact: the HIT-6. Qual Life Res 12:963–974

    Article  CAS  PubMed  Google Scholar 

  15. Lee AG, Brazis PW, Miller NR (1996) Posterior ischemic optic neuropathy associated with migraine. Headache 36:506–510

    Article  CAS  PubMed  Google Scholar 

  16. London A, Benhar I, Schwartz M (2013) The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol 9:44–53

    Article  CAS  PubMed  Google Scholar 

  17. Martinez A, Proupim N, Sanchez M (2008) Retinal nerve fibre layer thickness measurements using optical coherence tomography in migraine patients. Br J Ophthalmol 92:1069–1075

    Article  CAS  PubMed  Google Scholar 

  18. Mihailovic N, Leclaire MD, Eter N, Brücher VC (2020) Altered microvascular density in patients with systemic lupus erythematosus treated with hydroxychloroquine—an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol 258:2263–2269

    Article  PubMed  PubMed Central  Google Scholar 

  19. Park SH, Cho H, Hwang SJ, Jeon B, Seong M, Yeom H, Kang MH, Lim HW, Shin YU (2020) Changes in the retinal microvasculature measured using optical coherence tomography angiography according to age. J Clin Med 9(3):883

    Article  PubMed  PubMed Central  Google Scholar 

  20. Reggio E, Chisari CG, Ferrigno G, Patti F, Donzuso G, Sciacca G, Avitabile T, Faro S, Zappia M (2017) Migraine causes retinal and choroidal structural changes: evaluation with ocular coherence tomography. J Neurol 264:494–502

    Article  PubMed  Google Scholar 

  21. Rose KM, Wong TY, Carson AP, Couper DJ, Klein R, Sharrett AR (2007) Migraine and retinal microvascular abnormalities: the Atherosclerosis Risk in Communities Study. Neurology 68:1694–1700

    Article  CAS  PubMed  Google Scholar 

  22. Silvestrini M, Baruffaldi R, Bartolini M, Vernieri F, Lanciotti C, Matteis M, Troisi E, Provinciali L (2004) Basilar and middle cerebral artery reactivity in patients with migraine. Headache 44:29–34

    Article  PubMed  Google Scholar 

  23. Stewart WF, Lipton RB, Kolodner KB, Sawyer J, Lee C, Liberman JN (2000) Validity of the Migraine Disability Assessment (MIDAS) score in comparison to a diary-based measure in a population sample of migraine sufferers. Pain 88:41–52

    Article  PubMed  Google Scholar 

  24. Tietjen GE (2009) Migraine as a systemic vasculopathy. Cephalalgia 29:987–996

    Article  CAS  PubMed  Google Scholar 

  25. Ulusoy MO, Horasanlı B, Kal A (2019) Retinal vascular density evaluation of migraine patients with and without aura and association with white matter hyperintensities. Acta Neurol Belg 119:411–417

    Article  PubMed  Google Scholar 

Download references

Funding

No funding declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catello Vollono.

Ethics declarations

Conflicts of interest

No disclosures.

Ethical standard statement

The study was approved by the Ethical Committee of the Università Cattolica del Sacro Cuore (protocol ID 4155/2021).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romozzi, M., Cuffaro, G., Rollo, E. et al. Microvascular involvement in migraine: an optical coherence tomography angiography study. J Neurol 270, 4024–4030 (2023). https://doi.org/10.1007/s00415-023-11697-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-023-11697-z

Keywords

Navigation