Skip to main content

Advertisement

Log in

Diagnostic utility of neurofilament markers for MND is limited in restricted disease phenotype and for differentiation from compressive myeloradiculopathies

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Misdiagnosis is frequent in early motor neuron disease (MND), typically compressive radiculopathy, or in patients with restricted MND phenotype. In this retrospective, single tertiary centre study, we measured levels of neurofilament light (NfL) and phosphorylated neurofilament heavy (p-NfH) chain in cerebrospinal fluid (CSF) and of p-NfH in serum with commercially available ELISA kits and assessed their respective diagnostic performance as a marker of MND. The entire study population (n = 164) comprised 71 MND patients, 30 patients with compressive myelo- or radiculopathy, and 63 disease controls (DC). Among MND patients, we specified subgroups with only lower motoneuron involvement (MND-LMN, n = 15) and with confounding nerve roots or spinal cord compression (MND-C, n = 18), representing clinical diagnostic pitfalls. MND-LMN displayed significantly lower CSF NfL (p = 0.003) and p-NFH (p = 0.017), but not serum p-NfH (p = 0.347) levels compared to other MND patients (n = 56). The discriminative ability (area under the curve—AUC) of both CSF Nfs towards all MND patients was comparable to each other but significantly higher than that of p-NfH in serum (ps < 0.001). AUC of both CSF Nfs between MND-LMN and DC and also between MND-C and myelo-/radiculopathies were reduced, as compared to AUC between other MND and DC or myelo-/radiculopathies, respectively. Our results suggest that both Nfs in CSF represent a reliable diagnostic marker in a general MND population, fulfilling Awaji criteria. As for diagnostic pitfalls, and also for p-NfH in serum, their discriminative ability and, therefore, clinical utility appears to be limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data sharing statement

The data used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Chiò A, Calvo A, Moglia C, Mazzini L, Mora G, PARALS study group (2011) Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. J Neurol Neurosurg Psychiatry 82(7):740–746. https://doi.org/10.1136/jnnp.2010.235952

    Article  PubMed  Google Scholar 

  2. Bendotti C, Bonetto V, Pupillo E et al (2020) Focus on the heterogeneity of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 21(7–8):485–495. https://doi.org/10.1080/21678421.2020.1779298

    Article  CAS  PubMed  Google Scholar 

  3. Cellura E, Spataro R, Taiello AC, La Bella V (2012) Factors affecting the diagnostic delay in amyotrophic lateral sclerosis. Clin Neurol Neurosurg 114(6):550–554. https://doi.org/10.1016/j.clineuro.2011.11.026

    Article  PubMed  Google Scholar 

  4. Srinivasan J, Scala S, Jones HR, Saleh F, Russell JA (2006) Inappropriate surgeries resulting from misdiagnosis of early amyotrophic lateral sclerosis. Muscle Nerve 34(3):359–360. https://doi.org/10.1002/mus.20555

    Article  PubMed  Google Scholar 

  5. Pinto S, Swash M, de Carvalho M (2014) Does surgery accelerate progression of amyotrophic lateral sclerosis? J Neurol Neurosurg Psychiatry 85(6):643–646. https://doi.org/10.1136/jnnp-2013-305770

    Article  PubMed  Google Scholar 

  6. Sanderson AB, Arnold WD, Elsheikh B, Kissel JT (2015) The clinical spectrum of isolated peripheral motor dysfunction. Muscle Nerve 51(3):358–362. https://doi.org/10.1002/mus.24326

    Article  PubMed  PubMed Central  Google Scholar 

  7. Simon NG, Ayer G, Lomen-Hoerth C (2013) Is IVIg therapy warranted in progressive lower motor neuron syndromes without conduction block? Neurology 81(24):2116–2120. https://doi.org/10.1212/01.wnl.0000437301.28441.7e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Poesen K, Van Damme P (2019) Diagnostic and prognostic performance of neurofilaments in ALS. Front Neurol 18(9):1167. https://doi.org/10.3389/fneur.2018.01167

    Article  Google Scholar 

  9. Yuan A, Rao MV, Veeranna, Nixon RA (2017) Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harb Perspect Biol 9(4):a018309. https://doi.org/10.1101/cshperspect.a018309 (Published 2017 Apr 3)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lobsiger CS, Cleveland DW (2009) Neurofilaments: organization and function in neurons. In: Squire LR (ed) Encyclopedia of neuroscience. Elsevier, Amsterdam, pp 433–436. https://doi.org/10.1016/B978-008045046-9.00728-2

    Chapter  Google Scholar 

  11. Gaiottino J, Norgren N, Dobson R et al (2013) Increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS ONE 8(9):e75091. https://doi.org/10.1371/journal.pone.0075091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bridel C, van Wieringen WN, Zetterberg H et al (2019) Diagnostic value of cerebrospinal fluid neurofilament light protein in neurology: a systematic review and meta-analysis. JAMA Neurol 76(9):1035–1048. https://doi.org/10.1001/jamaneurol.2019.1534

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kuhle J, Regeniter A, Leppert D, Mehling M, Kappos L, Lindberg RL, Petzold A (2010) A highly sensitive electrochemiluminescence immunoassay for the neurofilament heavy chain protein. J Neuroimmunol 220(1–2):114–119. https://doi.org/10.1016/j.jneuroim.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  14. Kušnierová P, Zeman D, Hradílek P, Čábal M, Zapletalová O (2019) Neurofilament levels in patients with neurological diseases: a comparison of neurofilament light and heavy chain levels. J Clin Lab Anal 33(7):e22948. https://doi.org/10.1002/jcla.22948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rossi D, Volanti P, Brambilla L, Colletti T, Spataro R, La Bella V (2018) CSF neurofilament proteins as diagnostic and prognostic biomarkers for amyotrophic lateral sclerosis. J Neurol 265(3):510–521. https://doi.org/10.1007/s00415-017-8730-6

    Article  CAS  PubMed  Google Scholar 

  16. Ohya J, Chikuda H, Kato S, Hayakawa K, Oka H, Takeshita K, Tanaka S, Ogata T (2015) Elevated levels of phosphorylated neurofilament heavy subunit in the cerebrospinal fluid of patients with lumbar spinal stenosis: preliminary findings. Spine J 15(7):1587–1592. https://doi.org/10.1016/j.spinee.2015.03.013

    Article  PubMed  Google Scholar 

  17. Takahashi H, Aoki Y, Nakajima A et al (2018) Axonal damage is remarkable in patients with acutely worsening symptoms of compression myelopathy: biomarkers in cerebrospinal fluid samples. Eur Spine J 27(8):1824–1830. https://doi.org/10.1007/s00586-018-5549-5

    Article  PubMed  Google Scholar 

  18. Poesen K, De Schaepdryver M, Stubendorff B et al (2017) Neurofilament markers for ALS correlate with extent of upper and lower motor neuron disease. Neurology 88(24):2302–2309. https://doi.org/10.1212/WNL.0000000000004029

    Article  CAS  PubMed  Google Scholar 

  19. De Schaepdryver M, Jeromin A, Gille B, Claeys KG, Herbst V, Brix B, Van Damme P, Poesen K (2018) Comparison of elevated phosphorylated neurofilament heavy chains in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 89(4):367–373. https://doi.org/10.1136/jnnp-2017-316605

    Article  PubMed  Google Scholar 

  20. Steinacker P, Feneberg E, Weishaupt J et al (2016) Neurofilaments in the diagnosis of motoneuron diseases: a prospective study on 455 patients. J Neurol Neurosurg Psychiatry 87(1):12–20. https://doi.org/10.1136/jnnp-2015-311387

    Article  PubMed  Google Scholar 

  21. Gaiani A, Martinelli I, Bello L et al (2017) Diagnostic and prognostic biomarkers in amyotrophic lateral sclerosis: neurofilament light chain levels in definite subtypes of disease. JAMA Neurol 74(5):525–532. https://doi.org/10.1001/jamaneurol.2016.5398

    Article  PubMed  PubMed Central  Google Scholar 

  22. Falzone YM, Domi T, Agosta F et al (2020) Serum phosphorylated neurofilament heavy-chain levels reflect phenotypic heterogeneity and are an independent predictor of survival in motor neuron disease. J Neurol 267(8):2272–2280. https://doi.org/10.1007/s00415-020-09838-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ludolph A, Drory V, Hardiman O, Nakano I, Ravits J, Robberecht W, Shefner J, WFN Research Group On ALS/MND (2015) A revision of the El Escorial criteria 2015. Amyotroph Lateral Scler Frontotemporal Degener. 16(56):291–292. https://doi.org/10.3109/21678421.2015.1049183

    Article  PubMed  Google Scholar 

  24. Kimura F, Fujimura C, Ishida S, Nakajima H, Furutama D, Uehara H, Shinoda K, Sugino M, Hanafusa T (2006) Progression rate of ALSFRS-R at time of diagnosis predicts survival time in ALS. Neurology 66(2):265–267. https://doi.org/10.1212/01.wnl.0000194316.91908.8a

    Article  CAS  PubMed  Google Scholar 

  25. Lee SH, Kim KT, Suk KS, Lee JH, Shin JH, So DH, Kwack YH (2010) Asymptomatic cervical cord compression in lumbar spinal stenosis patients: a whole spine magnetic resonance imaging study. Spine (Phila Pa). 35(23):2057–2063. https://doi.org/10.1097/BRS.0b013e3181f4588a

    Article  Google Scholar 

  26. Schönström N, Willén J (2001) Imaging lumbar spinal stenosis. Radiol Clin N Am 39(1):31–53. https://doi.org/10.1016/s0033-8389(05)70262-1

    Article  PubMed  Google Scholar 

  27. Halbgebauer S, Steinacker P, Verde F, Weishaupt J, Oeckl P, von Arnim C, Dorst J, Feneberg E, Mayer B, Rosenbohm A, Silani V, Ludolph AC, Otto M (2022) Comparison of CSF and serum neurofilament light and heavy chain as differential diagnostic biomarkers for ALS. J Neurol Neurosurg Psychiatry 93(1):68–74. https://doi.org/10.1136/jnnp-2021-327129

    Article  PubMed  Google Scholar 

  28. Lu CH, Petzold A, Topping J et al (2015) Plasma neurofilament heavy chain levels and disease progression in amyotrophic lateral sclerosis: insights from a longitudinal study. J Neurol Neurosurg Psychiatry 86(5):565–573. https://doi.org/10.1136/jnnp-2014-307672

    Article  PubMed  Google Scholar 

  29. Wilke C, Pujol-Calderón F, Barro C et al (2019) Correlations between serum and CSF pNfH levels in ALS, FTD and controls: a comparison of three analytical approaches. Clin Chem Lab Med 57(10):1556–1564. https://doi.org/10.1515/cclm-2019-0015

    Article  CAS  PubMed  Google Scholar 

  30. Schreiber S, Spotorno N, Schreiber F et al (2018) Significance of CSF NfL and tau in ALS. J Neurol 265(11):2633–2645. https://doi.org/10.1007/s00415-018-9043-0

    Article  CAS  PubMed  Google Scholar 

  31. Menke RA, Gray E, Lu CH, Kuhle J, Talbot K, Malaspina A, Turner MR (2015) CSF neurofilament light chain reflects corticospinal tract degeneration in ALS. Ann Clin Transl Neurol 2(7):748–755. https://doi.org/10.1002/acn3.212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Health, Czech Republic—conceptual development of research organization, University Hospital Motol, Prague, Czech Republic grant no. 00064203.

Author information

Authors and Affiliations

Authors

Contributions

JH performed the experiments; JH and DB contributed to analysis and interpretation of the data. DB and RM recruited the patients, performed the clinical evaluation, and acquired clinical data. DB and RM drafted the manuscript. DB and RM conceptualized and designed the study. All authors had full access to the data in the study, critically revised, and approved the final version of the manuscript. The two (DB, RM) of the three authors of this publication are members of the European Reference Network for Neuromuscular Diseases—Project ID No. 870177.

Corresponding author

Correspondence to Daniel Baumgartner.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Patient consent

Informed consent was obtained from the patients who participated in the study.

Ethical approval

The study was approved by the Ethics Committee of the University Hospital Motol, Prague and has, therefore, been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 129 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumgartner, D., Mazanec, R. & Hanzalová, J. Diagnostic utility of neurofilament markers for MND is limited in restricted disease phenotype and for differentiation from compressive myeloradiculopathies. J Neurol 270, 1600–1614 (2023). https://doi.org/10.1007/s00415-022-11504-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-022-11504-1

Keywords

Navigation