Skip to main content
Log in

NODDI, diffusion tensor microstructural abnormalities and atrophy of brain white matter and gray matter contribute to cognitive impairment in multiple sclerosis

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Pathologically specific MRI measures may elucidate in-vivo the heterogeneous processes contributing to cognitive impairment in multiple sclerosis (MS).

Purpose

Using diffusion tensor and neurite orientation dispersion and density imaging (NODDI), we explored the contribution of focal lesions and normal-appearing (NA) tissue microstructural abnormalities to cognitive impairment in MS.

Methods

One hundred and fifty-two MS patients underwent 3 T brain MRI and a neuropsychological evaluation. Forty-eight healthy controls (HC) were also scanned. Fractional anisotropy (FA), mean diffusivity (MD), intracellular volume fraction (ICV_f) and orientation dispersion index (ODI) were assessed in cortical and white matter (WM) lesions, thalamus, NA cortex and NAWM. Predictors of cognitive impairment were identified using random forest.

Results

Fifty-two MS patients were cognitively impaired. Compared to cognitively preserved, impaired MS patients had higher WM lesion volume (LV), lower normalized brain volume (NBV), cortical volume (NCV), thalamic volume (NTV), and WM volume (p ≤ 0.021). They also showed lower NAWM FA, higher NAWM, NA cortex and thalamic MD, lower NAWM ICV_f, lower WM lesion ODI, and higher NAWM ODI (false discovery rate-p ≤ 0.026). Cortical lesion number and microstructural abnormalities were not significantly different. The best MRI predictors of cognitive impairment (relative importance) (out-of-bag area under the curve = 0.727) were NAWM FA (100%), NTV (96.0%), NBV (84.7%), thalamic MD (43.4%), NCV (40.6%), NA cortex MD (26.0%), WM LV (23.2%) and WM lesion ODI (17.9%).

Conclusions

Our multiparametric MRI study including NODDI measures suggested that neuro-axonal damage and loss of microarchitecture integrity in focal WM lesions, NAWM, and GM contribute to cognitive impairment in MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The dataset used and analyzed during the current study is available from the corresponding Author on reasonable request.

References

  1. Rocca MA, Amato MP, De Stefano N, Enzinger C, Geurts JJ, Penner IK et al (2015) Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol 14(3):302–317

    Article  Google Scholar 

  2. Filippi M, Bruck W, Chard D, Fazekas F, Geurts JJG, Enzinger C et al (2019) Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol 18(2):198–210

    Article  Google Scholar 

  3. Eijlers AJC, Meijer KA, van Geest Q, Geurts JJG, Schoonheim MM (2018) Determinants of cognitive impairment in patients with multiple sclerosis with and without atrophy. Radiology 288(2):544–551

    Article  Google Scholar 

  4. Hulst HE, Steenwijk MD, Versteeg A, Pouwels PJ, Vrenken H, Uitdehaag BM et al (2013) Cognitive impairment in MS: impact of white matter integrity, gray matter volume, and lesions. Neurology 80(11):1025–1032

    Article  CAS  Google Scholar 

  5. Llufriu S, Martinez-Heras E, Fortea J, Blanco Y, Berenguer J, Gabilondo I et al (2014) Cognitive functions in multiple sclerosis: impact of gray matter integrity. Mult Scler 20(4):424–432

    Article  Google Scholar 

  6. Mesaros S, Rocca MA, Kacar K, Kostic J, Copetti M, Stosic-Opincal T et al (2012) Diffusion tensor MRI tractography and cognitive impairment in multiple sclerosis. Neurology 78(13):969–975

    Article  CAS  Google Scholar 

  7. Preziosa P, Rocca MA, Pagani E, Stromillo ML, Enzinger C, Gallo A et al (2016) Structural MRI correlates of cognitive impairment in patients with multiple sclerosis: a multicenter study. Hum Brain Mapp 37(4):1627–1644

    Article  Google Scholar 

  8. Riccitelli GC, Pagani E, Meani A, Valsasina P, Preziosa P, Filippi M et al (2020) Cognitive impairment in benign multiple sclerosis: a multiparametric structural and functional MRI study. J Neurol 267(12):3508–3517

    Article  CAS  Google Scholar 

  9. Conti L, Preziosa P, Meani A, Pagani E, Valsasina P, Marchesi O et al (2021) Unraveling the substrates of cognitive impairment in multiple sclerosis: a multiparametric structural and functional magnetic resonance imaging study. Eur J Neurol 28(11):3749–3759

    Article  Google Scholar 

  10. Grussu F, Schneider T, Tur C, Yates RL, Tachrount M, Ianus A et al (2017) Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology? Ann Clin Transl Neurol 4(9):663–679

    Article  CAS  Google Scholar 

  11. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC (2012) NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4):1000–1016

    Article  Google Scholar 

  12. Granberg T, Fan Q, Treaba CA, Ouellette R, Herranz E, Mangeat G et al (2017) In vivo characterization of cortical and white matter neuroaxonal pathology in early multiple sclerosis. Brain 140(11):2912–2926

    Article  Google Scholar 

  13. Collorone S, Cawley N, Grussu F, Prados F, Tona F, Calvi A et al (2020) Reduced neurite density in the brain and cervical spinal cord in relapsing-remitting multiple sclerosis: A NODDI study. Mult Scler 26(13):1647–1657

    Article  CAS  Google Scholar 

  14. Spano B, Giulietti G, Pisani V, Morreale M, Tuzzi E, Nocentini U et al (2018) Disruption of neurite morphology parallels MS progression. Neurol Neuroimmunol Neuroinflamm 5(6):e502

    Article  Google Scholar 

  15. Rahmanzadeh R, Lu PJ, Barakovic M, Weigel M, Maggi P, Nguyen TD et al (2021) Myelin and axon pathology in multiple sclerosis assessed by myelin water and multi-shell diffusion imaging. Brain 144(6):1684–1696

    Article  Google Scholar 

  16. Collorone S, Prados F, Kanber B, Cawley NM, Tur C, Grussu F et al (2021) Brain microstructural and metabolic alterations detected in vivo at onset of the first demyelinating event. Brain 144(5):1409–1421

    Article  Google Scholar 

  17. De Santis S, Bastiani M, Droby A, Kolber P, Zipp F, Pracht E et al (2019) Characterizing microstructural tissue properties in multiple sclerosis with diffusion MRI at 7T and 3T: the impact of the experimental design. Neuroscience 403:17–26

    Article  Google Scholar 

  18. Preziosa P, Pagani E, Bonacchi R, Cacciaguerra L, Falini A, Rocca MA et al (2022) In vivo detection of damage in multiple sclerosis cortex and cortical lesions using NODDI. J Neurol Neurosurg Psychiatry 93(6):628–636

    Article  Google Scholar 

  19. Rao S (1990) The cognitive function study group of the national multiple sclerosis society. A manual for the brief repeatable battery of neuropsychological tests in multiple sclerosis. Medical College of Wisconsin, Milwaukee, WI

  20. Amato MP, Portaccio E, Goretti B, Zipoli V, Ricchiuti L, De Caro MF et al (2006) The Rao’s Brief Repeatable Battery and Stroop Test: normative values with age, education and gender corrections in an Italian population. Mult Scler 12(6):787–793

    Article  CAS  Google Scholar 

  21. Amato MP, Morra VB, Falautano M, Ghezzi A, Goretti B, Patti F et al (2018) Cognitive assessment in multiple sclerosis-an Italian consensus. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology 39(8):1317–1324

    Article  Google Scholar 

  22. Valverde S, Cabezas M, Roura E, Gonzalez-Villa S, Pareto D, Vilanova JC et al (2017) Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. Neuroimage 155:159–168

    Article  Google Scholar 

  23. Geurts JJ, Roosendaal SD, Calabrese M, Ciccarelli O, Agosta F, Chard DT et al (2011) Consensus recommendations for MS cortical lesion scoring using double inversion recovery MRI. Neurology 76(5):418–424

    Article  CAS  Google Scholar 

  24. Filippi M, Preziosa P, Banwell BL, Barkhof F, Ciccarelli O, De Stefano N et al (2019) Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain 142(7):1858–1875

    Article  Google Scholar 

  25. Bo L, Vedeler CA, Nyland HI, Trapp BD, Mork SJ (2003) Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol 62(7):723–732

    Article  Google Scholar 

  26. Battaglini M, Jenkinson M, De Stefano N (2012) Evaluating and reducing the impact of white matter lesions on brain volume measurements. Hum Brain Mapp 33(9):2062–2071

    Article  Google Scholar 

  27. Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A et al (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17(1):479–489

    Article  Google Scholar 

  28. Andersson JLR, Graham MS, Drobnjak I, Zhang H, Filippini N, Bastiani M (2017) Towards a comprehensive framework for movement and distortion correction of diffusion MR images: within volume movement. Neuroimage 152:450–466

    Article  Google Scholar 

  29. Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S et al (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50(5):1077–1088

    Article  CAS  Google Scholar 

  30. Guerrero JM, Adluru N, Bendlin BB, Goldsmith HH, Schaefer SM, Davidson RJ et al (2019) Optimizing the intrinsic parallel diffusivity in NODDI: an extensive empirical evaluation. PLoS ONE 14(9):e0217118

    Article  CAS  Google Scholar 

  31. Kincses ZT, Ropele S, Jenkinson M, Khalil M, Petrovic K, Loitfelder M et al (2011) Lesion probability mapping to explain clinical deficits and cognitive performance in multiple sclerosis. Mult Scler 17(6):681–689

    Article  CAS  Google Scholar 

  32. Rossi F, Giorgio A, Battaglini M, Stromillo ML, Portaccio E, Goretti B et al (2012) Relevance of brain lesion location to cognition in relapsing multiple sclerosis. PLoS ONE 7(11):e44826

    Article  CAS  Google Scholar 

  33. Preziosa P, Pagani E, Morelli ME, Copetti M, Martinelli V, Pirro F et al (2017) DT MRI microstructural cortical lesion damage does not explain cognitive impairment in MS. Mult Scler 23(14):1918–1928

    Article  Google Scholar 

  34. Schmierer K, Wheeler-Kingshott CA, Boulby PA, Scaravilli F, Altmann DR, Barker GJ et al (2007) Diffusion tensor imaging of post mortem multiple sclerosis brain. Neuroimage 35(2):467–477

    Article  Google Scholar 

  35. Schneider T, Brownlee W, Zhang H, Ciccarelli O, Miller DH, Wheeler-Kingshott CG (2017) Sensitivity of multi-shell NODDI to multiple sclerosis white matter changes: a pilot study. Funct Neurol 32(2):97–101

    Article  Google Scholar 

  36. Lassmann H (2018) Multiple sclerosis pathology. Cold Spring Harb Perspect Med. 8(3):a028936

    Article  Google Scholar 

  37. Alotaibi A, Podlasek A, AlTokhis A, Aldhebaib A, Dineen RA, Constantinescu CS (2021) Investigating microstructural changes in white matter in multiple sclerosis: a systematic review and meta-analysis of neurite orientation dispersion and density imaging. Brain Sci 11(9):1151

    Article  Google Scholar 

  38. Dineen RA, Vilisaar J, Hlinka J, Bradshaw CM, Morgan PS, Constantinescu CS et al (2009) Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis. Brain 132(Pt 1):239–249

    Article  CAS  Google Scholar 

  39. Roosendaal SD, Geurts JJ, Vrenken H, Hulst HE, Cover KS, Castelijns JA et al (2009) Regional DTI differences in multiple sclerosis patients. Neuroimage 44(4):1397–1403

    Article  CAS  Google Scholar 

  40. Schoonheim MM, Vigeveno RM, Rueda Lopes FC, Pouwels PJ, Polman CH, Barkhof F et al (2014) Sex-specific extent and severity of white matter damage in multiple sclerosis: implications for cognitive decline. Hum Brain Mapp 35(5):2348–2358

    Article  Google Scholar 

  41. Margoni M, Villani U, Silvestri E, Franciotta S, Anglani MG, Causin F et al (2022) Quantification of normal-appearing white matter damage in early relapse-onset multiple sclerosis through neurite orientation dispersion and density imaging. Mult Scler Relat Disord 58:103396

    Article  Google Scholar 

  42. Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M et al (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128(Pt 11):2705–2712

    Article  Google Scholar 

  43. Houtchens MK, Benedict RH, Killiany R, Sharma J, Jaisani Z, Singh B et al (2007) Thalamic atrophy and cognition in multiple sclerosis. Neurology 69(12):1213–1223

    Article  CAS  Google Scholar 

  44. Schoonheim MM, Hulst HE, Brandt RB, Strik M, Wink AM, Uitdehaag BM et al (2015) Thalamus structure and function determine severity of cognitive impairment in multiple sclerosis. Neurology 84(8):776–783

    Article  Google Scholar 

  45. Schoonheim MM, Popescu V, Rueda Lopes FC, Wiebenga OT, Vrenken H, Douw L et al (2012) Subcortical atrophy and cognition: sex effects in multiple sclerosis. Neurology 79(17):1754–1761

    Article  Google Scholar 

  46. Eijlers AJC, Dekker I, Steenwijk MD, Meijer KA, Hulst HE, Pouwels PJW et al (2019) Cortical atrophy accelerates as cognitive decline worsens in multiple sclerosis. Neurology 93(14):e1348–e1359

    Article  Google Scholar 

  47. Steenwijk MD, Geurts JJ, Daams M, Tijms BM, Wink AM, Balk LJ et al (2016) Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant. Brain 139(Pt 1):115–126

    Article  Google Scholar 

  48. Calabrese M, Agosta F, Rinaldi F, Mattisi I, Grossi P, Favaretto A et al (2009) Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Arch Neurol 66(9):1144–1150

    Article  Google Scholar 

  49. Papadopoulou A, Muller-Lenke N, Naegelin Y, Kalt G, Bendfeldt K, Kuster P et al (2013) Contribution of cortical and white matter lesions to cognitive impairment in multiple sclerosis. Mult Scler 19(10):1290–1296

    Article  Google Scholar 

  50. Eijlers AJC, van Geest Q, Dekker I, Steenwijk MD, Meijer KA, Hulst HE et al (2018) Predicting cognitive decline in multiple sclerosis: a 5-year follow-up study. Brain 141(9):2605–2618

    Google Scholar 

Download references

Funding

This study was supported by Fondazione Italiana Sclerosi Multipla with a senior research fellowship (FISM2019/BS/009) and a research grant from (FISM2018/R/16), and financed or co-financed with the ‘5 per mille’ public funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Filippi.

Ethics declarations

Conflicts of interest

P. Preziosa received speaker honoraria from Roche, Biogen, Novartis, Merck Serono, Bristol Myers Squibb and Genzyme. He has received research support from Italian Ministry of Health and Fondazione Italiana Sclerosi Multipla. E. Pagani, A. Meani, O. Marchesi, L. Conti, and A. Falini have nothing to disclose. M.A. Rocca received consulting fees from Biogen, Bristol Myers Squibb, Eli Lilly, Janssen, Roche; and speaker honoraria from Bayer, Biogen, Bristol Myers Squibb, Bromatech, Celgene, Genzyme, Merck Healthcare Germany, Merck Serono SpA, Novartis, Roche, and Teva. She receives research support from the MS Society of Canada and Fondazione Italiana Sclerosi Multipla. She is Associate Editor for Multiple Sclerosis and Related Disorders. M. Filippi M. Filippi is Editor in-Chief of the Journal of Neurology, Associate Editor of Human Brain Mapping, Associate Editor of Radiology, and Associate Editor of Neurological Sciences; received compensation for consulting services from Alexion, Almirall, Biogen, Merck, Novartis, Roche, Sanofi; speaking activities from Bayer, Biogen, Celgene, Chiesi Italia SpA, Eli Lilly, Genzyme, Janssen, Merck-Serono, Neopharmed Gentili, Novartis, Novo Nordisk, Roche, Sanofi, Takeda, and TEVA; participation in Advisory Boards for Alexion, Biogen, Bristol-Myers Squibb, Merck, Novartis, Roche, Sanofi, Sanofi-Aventis, Sanofi-Genzyme, Takeda; scientific direction of educational events for Biogen, Merck, Roche, Celgene, Bristol-Myers Squibb, Lilly, Novartis, Sanofi-Genzyme; he receives research support from Biogen Idec, Merck-Serono, Novartis, Roche, Italian Ministry of Health, Fondazione Italiana Sclerosi Multipla, and ARiSLA (Fondazione Italiana di Ricerca per la SLA).

Ethical approval

Approval was received from the institutional ethical standards committee on human experimentation of IRCCS Ospedale San Raffaele for any experiments using human subjects (Protocol N° 2015–33). Written informed consent was obtained from all subjects prior to study participation according to the Declaration of Helsinki.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preziosa, P., Pagani, E., Meani, A. et al. NODDI, diffusion tensor microstructural abnormalities and atrophy of brain white matter and gray matter contribute to cognitive impairment in multiple sclerosis. J Neurol 270, 810–823 (2023). https://doi.org/10.1007/s00415-022-11415-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-022-11415-1

Keywords

Navigation