Skip to main content

Advertisement

Log in

Event-related oscillations differentiate between cognitive, motor and visual impairments

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) share pathological and clinical similarities while differing in the timing and severity of motor cognitive and visual impairment. Previous EEG studies found abnormal neural oscillations in PD, mild cognitive impairment (MCI) and Alzheimer’s disease, however, the electrophysiological signature of clinical symptoms is still unclear. We assessed the specificity of event-related oscillations in distinguishing between cognitive, motor and visual involvement in patients with neurodegenerative conditions.

Methods

EEG was recorded during a visual oddball task in 30 PD, 28 DLB, 30 MCI patients and 32 age-matched healthy controls. Target and non-target event-related power were examined in the time–frequency domain using complex Morlet wavelet convolution and compared within and between the study groups.

Results

MCI (z = − 1.8, p = 0.04, Cohen’s d = − 0.5) and DLB (z = − 3.1, p < 0.001, d = − 1.0) patients showed decreased delta-band target event-related synchronization compared to participants with normal cognition. PD (z = 1.6, p = 0.05, d = 0.5) and DLB (z = 2.7, p < 0.01, d = 0.9) patients showed decreased beta suppression compared to MCI patients and controls. DLB patients with visual hallucinations (VH) showed decreased early-alpha suppression (z = 2.08, p = 0.019, d = 3.19, AUC = 1.0 ± 0.0) compared to DLB-VH.

Conclusions

Decreased event-related delta-band synchronization, reflecting a decline in information processing ability, was characteristic of cognitive impairment due to any cause. Decreased event-related beta suppression, reflecting impaired execution of motor action, was specific to PD and DLB. Decreased event-related early-alpha suppression was characteristic of the presence of VH in DLB. These findings show that specific oscillations may reflect specific clinical symptoms, being a marker of network dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Anonymized data can be obtained by request from a qualified investigator for purposes of replicating procedures and results.

Abbreviations

AD:

Alzheimer’s disease

AUC:

Area under the ROC

DLB:

Dementia with Lewy bodies

ERP:

Event-related potential

MDS:

Movement disorders society

MCI:

Mild cognitive impairment

MoCA:

Montreal cognitive assessment

PD:

Parkinson’s disease

PDD:

Parkinson’s disease dementia

ROC:

Receiver operating characteristic

UPDRS:

Unified PD rating scale motor part III

References

  1. Walker Z, Possin KL, Boeve BF, Aarsland D (2015) Lewy body dementias. Lancet 386(10004):1683–1697. https://doi.org/10.1016/S0140-6736(15)00462-6

    Article  PubMed  PubMed Central  Google Scholar 

  2. McKeith IG, Boeve BF, Dickson DW et al (2017) Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 89:88–100. https://doi.org/10.1212/WNL.0000000000004058

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aarsland D, Creese B, Politis M, Chaudhuri KR, Weintraub D, Ballard C (2017) Cognitive decline in Parkinson disease. Nat Rev Neurol 13(4):217–231. https://doi.org/10.1038/nrneurol.2017.27

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pigott K, Rick J, Xie SX et al (2015) Longitudinal study of normal cognition in Parkinson disease. Neurology 85(15):1276–1282. https://doi.org/10.1212/WNL.0000000000002001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Williams-Gray CH, Mason SL, Evans JR et al (2013) The CamPaIGN study of PD: 10-year outlook in an incident population-based cohort. J Neurol Neurosurg Psych 84(11):1258–1264. https://doi.org/10.1136/jnnp-2013-305277

    Article  Google Scholar 

  6. O’Hara DM, Pawar G, Kalia SK, Kalia LV (2020) LRRK2 and α-Synuclein: distinct or synergistic players in PD? Front Neurosci. https://doi.org/10.3389/fnins.2020.00577

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schumacher J, Thomas AJ, Peraza LR et al (2020) EEG alpha reactivity and cholinergic system integrity in Lewy body dementia and Alzheimer’s disease. Alzheimer’s Res Ther 12:1–2. https://doi.org/10.1186/s13195-020-00613-6

    Article  CAS  Google Scholar 

  8. Cohen MX (2014) Analyzing neural time series data: theory and practice. MIT press

    Book  Google Scholar 

  9. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169–195. https://doi.org/10.1016/S0165-0173(98)00056-3

    Article  CAS  PubMed  Google Scholar 

  10. Başar E, Başar-Eroglu C, Karakaş S, Schürmann M (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 39:241–248. https://doi.org/10.1016/S0167-8760(00)00145-8

    Article  PubMed  Google Scholar 

  11. Mazaheri A, Slagter HA, Thut G, Foxe JJ (2018) Orchestration of brain oscillations: principles and functions. Eur J Neurosci 48(7):2385–2388. https://doi.org/10.1111/ejn.14189

    Article  PubMed  Google Scholar 

  12. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019 (Review)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sellers EW, Arbel Y, Donchin E (2012) 12 BCIs that use P300 event-related potentials. Brain-comput Interfaces Principles Practice 24:215

    Article  Google Scholar 

  14. Nieuwenhuis S, Aston-Jones G, Cohen JD (2005) Decision making, the P3, and the locus coeruleus-norepinephrine system. Psycholog Bull 131:510–532

    Article  Google Scholar 

  15. Brown SB, Van der Wee NJ, Van Noorden MS, Giltay EJ, Nieuwenhuis S (2015) Noradrenergic and cholinergic modulation of late ERP responses to deviant stimuli. Psychophysiology 52:1620–1631. https://doi.org/10.1111/psyp.12544

    Article  PubMed  Google Scholar 

  16. Caldenhove S, Borghans LG, Blokland A, Sambeth A (2017) Role of acetylcholine and serotonin in novelty processing using an oddball paradigm. Behav Brain Res 331:199–204. https://doi.org/10.1016/j.bbr.2017.05.031

    Article  CAS  PubMed  Google Scholar 

  17. Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6(4):285–296. https://doi.org/10.1038/nrn1650

    Article  CAS  PubMed  Google Scholar 

  18. Bonanni L, Thomas A, Tiraboschi P, Perfetti B, Varanese S, Onofrj M (2008) EEG comparisons in early Alzheimer’s disease, dementia with Lewy bodies and PD with dementia patients with a 2-year follow-up. Brain 131(3):690–705. https://doi.org/10.1093/brain/awm322

    Article  PubMed  Google Scholar 

  19. Nimmrich V, Draguhn A, Axmacher N (2015) Neuronal network oscillations in neurodegenerative diseases. Neuromol Med 17(3):270–284

    Article  CAS  Google Scholar 

  20. Little S, Brown P (2014) The functional role of beta oscillations in PD. Parkinsonism Relat Disord 20:S44-48. https://doi.org/10.1016/S1353-8020(13)70013-0

    Article  PubMed  Google Scholar 

  21. Litvan I, Goldman JG, Tröster AI et al (2012) Diagnostic criteria for mild cognitive impairment in PD: Movement Disorder Society Task Force guidelines. Mov Disord 27(3):349–356. https://doi.org/10.1002/mds.24893

    Article  PubMed  PubMed Central  Google Scholar 

  22. Petersen RC, Lopez O, Armstrong MJ et al (2018) Practice guideline update summary: mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 90(3):126–135. https://doi.org/10.1212/WNL.0000000000004826

    Article  PubMed  PubMed Central  Google Scholar 

  23. McKeith IG, Dickson DW, Lowe J et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65(12):1863–1872. https://doi.org/10.1212/01.wnl.0000187889.17253.b1

    Article  CAS  PubMed  Google Scholar 

  24. Rosenblum Y, Bregman N, Giladi N et al (2021) Associations between visual hallucinations and impaired visuo-spatial abilities in dementia with Lewy bodies. Neuropsychology 35(3):276. https://doi.org/10.1037/neu0000728

    Article  PubMed  Google Scholar 

  25. Rosenblum Y, Maidan I, Fahoum F et al (2020) Differential changes in visual and auditory event-related oscillations in dementia with Lewy bodies. Clin Neurophysiol 131(10):2357–2366. https://doi.org/10.1016/j.clinph.2020.06.029

    Article  PubMed  Google Scholar 

  26. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

    Article  PubMed  Google Scholar 

  27. Colombo MA, Napolitani M, Boly M et al (2019) The spectral exponent of the resting EEG indexes the presence of consciousness during unresponsiveness induced by propofol, xenon, and ketamine. Neuroimage 189:631–644. https://doi.org/10.1016/j.neuroimage.2019.01.024

    Article  CAS  PubMed  Google Scholar 

  28. Babiloni C, Barry RJ, Başar E et al (2020) International Federation of Clinical Neurophysiology (IFCN)–EEG research workgroup: recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: applications in clinical research studies. Clin Neurophysiol 131(1):285–307. https://doi.org/10.1016/j.clinph.2019.06.234

    Article  PubMed  Google Scholar 

  29. Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG-and MEG-data. J Neurosci Methods 164:177–190. https://doi.org/10.1016/j.jneumeth.2007.03.024

    Article  PubMed  Google Scholar 

  30. Güntekin B, Hanoğlu L, Güner D et al (2018) Cognitive impairment in PD is reflected with gradual decrease of EEG delta responses during auditory discrimination. Front Psychol 9:170. https://doi.org/10.3389/fpsyg.2018.00170

    Article  PubMed  PubMed Central  Google Scholar 

  31. Başar E, Güntekin B, Tülay E, Yener GG (2010) Evoked and event related coherence of Alzheimer patients manifest differentiation of sensory–cognitive networks. Brain Res 1357:79–90. https://doi.org/10.1016/j.brainres.2010.08.054

    Article  CAS  PubMed  Google Scholar 

  32. Yener GG, Fide E, Özbek Y et al (2019) The difference of mild cognitive impairment in PD from amnestic mild cognitive impairment: deeper power decrement and no phase-locking in visual event-related responses. Int J Psychophysiol 139:48–58. https://doi.org/10.1016/j.ijpsycho.2019.03.002

    Article  PubMed  Google Scholar 

  33. Kurt P, Emek-Savaş DD, Batum K et al (2014) Patients with mild cognitive impairment display reduced auditory event-related delta oscillatory responses. Behav Neurol 2014:268967. https://doi.org/10.1155/2014/268967

    Article  PubMed  PubMed Central  Google Scholar 

  34. Güntekin B, Aktürk T, Yıldırım E, Yılmaz NH, Hanoğlu L, Yener G (2020) Abnormalities in auditory and visual cognitive processes are differentiated with theta responses in patients with Parkinson’s disease with and without dementia. Int J Psychophysiol 1(153):65–79. https://doi.org/10.1016/j.ijpsycho.2020.04.016

    Article  Google Scholar 

  35. Xu J, Zhao S, Zhang H, Zheng C (2011) Decreased delta event-related synchronization in patients with early vascular dementia. Clin EEG Neurosci 42(1):53–58. https://doi.org/10.1177/155005941104200111

    Article  PubMed  Google Scholar 

  36. Atagün Mİ, Güntekin B, Maşalı B, Tülay E, Başar E (2014) Decrease of event-related delta oscillations in euthymic patients with bipolar disorder. Psychiatry Res Neuroimaging 223(1):43–48. https://doi.org/10.1016/j.pscychresns.2014.04.001

    Article  Google Scholar 

  37. Mumtaz W, Vuong PL, Malik AS, Abd Rashid RB (2018) A review on EEG-based methods for screening and diagnosing alcohol use disorder. Cogn Neurodyn 12(2):141–156. https://doi.org/10.1007/s11571-017-9465-x

    Article  PubMed  Google Scholar 

  38. Ergen M, Marbach S, Brand A, Başar-Eroğlu C, Demiralp T (2008) P3 and delta band responses in visual oddball paradigm in schizophrenia. Neurosci Lett 440(3):304–308. https://doi.org/10.1016/j.neulet.2008.05.054

    Article  CAS  PubMed  Google Scholar 

  39. Yener GG, Emek-Savaş DD, Lizio R, Çavuşoğlu B et al (2016) Frontal delta event-related oscillations relate to frontal volume in mild cognitive impairment and healthy controls. Int J Psychophysiol 1(103):110–117. https://doi.org/10.1016/j.ijpsycho.2015.02.005

    Article  Google Scholar 

  40. Rosenblum Y, Maidan I, Goldstein O, et al. Event-Related Oscillations in Dementia with Lewy Bodies with a Mutation in the GBA Gene. PREPRINT (Version 1) available at Research Square, 2021. https://doi.org/10.21203/rs.3.rs-704367/v1. https://www.researchsquare.com/article/rs-704367/v1

  41. Shiner T, Mirelman A, Rosenblum Y et al (2021) The effect of GBA mutations and APOE polymorphisms on dementia with lewy bodies in Ashkenazi jews. J Alzheimer’s Dis. https://doi.org/10.3233/JAD-201295 (Preprint)

    Article  Google Scholar 

  42. Güntekin B, Aktürk T, Arakaki X, Bonanni L, Del Percio C, Edelmayer R, Farina F, Ferri R, Hanoğlu L, Kumar S, Lizio R (2021) Are there consistent abnormalities in event-related EEG oscillations in patients with Alzheimer’s disease compared to other diseases belonging to dementia? Psychophysiology 30:e13934. https://doi.org/10.1111/psyp.13934

    Article  Google Scholar 

  43. Güntekin B, Aktürk T, Yıldırım E, Yılmaz NH, Hanoğlu L, Yener G (2020) Abnormalities in auditory and visual cognitive processes are differentiated with theta responses in patients with PD with and without dementia. Inter J Psychophysiol 153:65–79. https://doi.org/10.1016/j.ijpsycho.2020.04.016

    Article  Google Scholar 

  44. Yener GG, Güntekin B, Öniz A, Başar E (2007) Increased frontal phase-locking of event-related theta oscillations in Alzheimer patients treated with cholinesterase inhibitors. Int J Psychophysiol 64:46–52. https://doi.org/10.1016/j.ijpsycho.2006.07.006

    Article  CAS  PubMed  Google Scholar 

  45. Oswal A, Gratwicke J, Akram H et al (2021) Cortical connectivity of the nucleus basalis of Meynert in PD and Lewy body dementias. Brain 144(3):781–788. https://doi.org/10.1093/brain/awaa411

    Article  PubMed  Google Scholar 

  46. Klimesch W (2012) Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci 16(12):606–617. https://doi.org/10.1016/j.tics.2012.10.007

    Article  PubMed  PubMed Central  Google Scholar 

  47. Delval A, Defebvre L, Labyt E et al (2006) Movement-related cortical activation in familial Parkinson disease. Neurology 67(6):1086–1087. https://doi.org/10.1212/01.wnl.0000237528.32932.9a

    Article  CAS  PubMed  Google Scholar 

  48. Brown P, Marsden CD (1999) Bradykinesia and impairment of EEG desynchronization in PD. Mov Disord 14(3):423–429. https://doi.org/10.1002/1531-8257(199905)14:3%3c423::AID-MDS1006%3e3.0.CO;2-V

    Article  CAS  PubMed  Google Scholar 

  49. Babiloni C, Pascarelli MT, Lizio R et al (2020) Abnormal cortical neural synchronization mechanisms in quiet wakefulness are related to motor deficits, cognitive symptoms, and visual hallucinations in PD patients: an electroencephalographic study. Neurobiol Aging 91:88–111. https://doi.org/10.1016/j.neurobiolaging.2020.02.029

    Article  PubMed  Google Scholar 

  50. Neuper C, Pfurtscheller G (2010) Electroencephalographic characteristics during motor imagery. The neurophysiological foundations of mental and motor imagery. Neurophysiol Found Ment Mot Imag 14:65–81

    Article  Google Scholar 

  51. Jenkinson N, Brown P (2011) New insights into the relationship between dopamine, beta oscillations and motor function. Trends Neurosci 34(12):611–618. https://doi.org/10.1016/j.tins.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  52. Brown P (2006) Bad oscillations in PD. Park Relat Disord. https://doi.org/10.1007/978-3-211-45295-0_6

    Article  Google Scholar 

  53. Bichsel O, Gassert R, Stieglitz L et al (2018) Functionally separated networks for self-paced and externally-cued motor execution in PD: evidence from deep brain recordings in humans. Neuroimage 177:20–29. https://doi.org/10.1016/j.neuroimage.2018.05.012

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all the volunteers and patients who participated in this study as well as patients’ caregivers.

Funding

This work was internally funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anat Mirelman.

Ethics declarations

Conflicts of interest

The authors report no competing interests.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenblum, Y., Shiner, T., Bregman, N. et al. Event-related oscillations differentiate between cognitive, motor and visual impairments. J Neurol 269, 3529–3540 (2022). https://doi.org/10.1007/s00415-021-10953-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-021-10953-4

Keywords

Navigation