Skip to main content

Advertisement

Log in

Decreased aperiodic neural activity in Parkinson’s disease and dementia with Lewy bodies

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Neural oscillations and signal complexity have been widely studied in neurodegenerative diseases, whereas aperiodic activity has not been explored yet in those disorders. Here, we assessed whether the study of aperiodic activity brings new insights relating to disease as compared to the conventional spectral and complexity analyses. Eyes-closed resting-state electroencephalography (EEG) was recorded in 21 patients with dementia with Lewy bodies (DLB), 28 patients with Parkinson’s disease (PD), 27 patients with mild cognitive impairment (MCI) and 22 age-matched healthy controls. Spectral power was differentiated into its oscillatory and aperiodic components using the Irregularly Resampled Auto-Spectral Analysis. Signal complexity was explored using the Lempel–Ziv algorithm (LZC). We found that DLB patients showed steeper slopes of the aperiodic power component with large effect sizes compared to the controls and MCI and with a moderate effect size compared to PD. PD patients showed steeper slopes with a moderate effect size compared to controls and MCI. Oscillatory power and LZC differentiated only between DLB and other study groups and were not sensitive enough to detect differences between PD, MCI, and controls. In conclusion, both DLB and PD are characterized by alterations in aperiodic dynamics, which are more sensitive in detecting disease-related neural changes than the traditional spectral and complexity analyses. Our findings suggest that steeper aperiodic slopes may serve as a marker of network dysfunction in DLB and PD features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The EEG data cannot be made publicly available because of ethical permits.

Abbreviations

DLB:

Dementia with Lewy bodies

IRASA:

Irregularly resampled auto-spectral analysis

LZC:

Lempel–Ziv complexity

MCI:

Mild cognitive impairment

MDS-UPDRS:

Movement disorders society unified Parkinson’s Disease Rating Scale motor part III

MoCA:

Montreal cognitive assessment

PD:

Parkinson’s disease

References

  1. Abásolo D, Hornero R, Gómez C, García M, López M (2006) Analysis of EEG background activity in Alzheimer’s disease patients with Lempel-Ziv complexity and central tendency measure. Med Eng Phys 28(4):315–322. https://doi.org/10.1016/j.medengphy.2005.07.004

    Article  PubMed  Google Scholar 

  2. Abásolo D, Simons S, Morgado da Silva R, Tononi G, Vyazovskiy VV (2015) Lempel-Ziv complexity of cortical activity during sleep and waking in rats. J Neurophysiol 113(7):2742–2752. https://doi.org/10.1152/jn.00575.2014

    Article  PubMed  PubMed Central  Google Scholar 

  3. Adelhöfer N, Paulus T, Mückschel M, Bäumer T, Bluschke A, Takacs A, Tóth-Fáber E, Tárnok Z, Roessner V, Weissbach A, Münchau A (2021) Increased scale-free and aperiodic neural activity during sensorimotor integration—a novel facet in Tourette syndrome. Brain Commun 3(4):fcab250. https://doi.org/10.1093/braincomms/fcab250

    Article  PubMed  PubMed Central  Google Scholar 

  4. Babiloni C, Barry RJ, Başar E, Blinowska KJ, Cichocki A, Drinkenburg WH, Klimesch W, Knight RT, da Silva FL, Nunez P, Oostenveld R (2020) International Federation of Clinical Neurophysiology (IFCN)–EEG research workgroup: recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: applications in clinical research studies. Clin Neurophysiol 131(1):285–307. https://doi.org/10.1016/j.clinph.2019.06.234

    Article  PubMed  Google Scholar 

  5. Bédard C, Destexhe A (2009) Macroscopic models of local field potentials and the apparent 1/f noise in brain activity. Biophys J 96(7):2589–2603. https://doi.org/10.1016/j.bpj.2008.12.3951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bódizs R, Szalárdy O, Horváth C, Ujma PP, Gombos F, Simor P, Pótári A, Zeising M, Steiger A, Dresler M (2021) A set of composite, non-redundant EEG measures of NREM sleep based on the power law scaling of the Fourier spectrum. Sci Reports 11(1):1–8. https://doi.org/10.1038/s41598-021-81230-7

    Article  CAS  Google Scholar 

  7. Cassani R, Estarellas M, San-Martin R, Fraga FJ, Falk TH (2018) Systematic review on resting-state EEG for Alzheimer’s disease diagnosis and progression assessment. Dis Markers 4:2018. https://doi.org/10.1155/2018/5174815

    Article  Google Scholar 

  8. Colombo MA, Napolitani M, Boly M, Gosseries O, Casarotto S, Rosanova M, Brichant JF, Boveroux P, Rex S, Laureys S, Massimini M (2019) The spectral exponent of the resting EEG indexes the presence of consciousness during unresponsiveness induced by propofol, xenon, and ketamine. Neuroimage 189:631–644. https://doi.org/10.1016/j.neuroimage.2019.01.024

    Article  CAS  PubMed  Google Scholar 

  9. Darmani G, Drummond NM, Ramezanpour H, Saha U, Hoque T, Udupa K, Sarica C, Zeng K, Cortez Grippe T, Nankoo JF, Bergmann TO (2023) Long-term recording of subthalamic aperiodic activities and beta bursts in Parkinson’s disease. Mov Disord 38(2):232–243. https://doi.org/10.1002/mds.29276

    Article  PubMed  Google Scholar 

  10. Dauwels J, Srinivasan K, Ramasubba Reddy M, Musha T, Vialatte FB, Latchoumane C, Jeong J, Cichocki A (2011) Slowing and loss of complexity in Alzheimer’s EEG: two sides of the same coin? Int J Alz Dis 13:2011. https://doi.org/10.4061/2011/539621

    Article  Google Scholar 

  11. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

    Article  PubMed  Google Scholar 

  12. Donoghue T, Haller M, Peterson EJ, Varma P, Sebastian P, Gao R, Noto T, Lara AH, Wallis JD, Knight RT, Shestyuk A (2020) Parameterizing neural power spectra into periodic and aperiodic components. Nat Neurosci 23(12):1655–1665. https://doi.org/10.1038/s41593-020-00744-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Faul S (2020) Kolmogorov Complexity. https://www.mathworks.com/matlabcentral/fileexchange/6886-kolmogorov-complexity, MATLAB Central File Exchange.

  14. Gao R, Peterson EJ, Voytek B (2017) Inferring synaptic excitation/inhibition balance from field potentials. Neuroimage 158:70–78. https://doi.org/10.1016/j.neuroimage.2017.06.078

    Article  PubMed  Google Scholar 

  15. Gerster M, Waterstraat G, Litvak V, Lehnertz K, Schnitzler A, Florin E, Curio G, Nikulin V (2022) Separating neural oscillations from aperiodic 1/f activity: challenges and recommendations. Neuroinformatics 20(4):991–1012. https://doi.org/10.1007/s12021-022-09581-8

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gómez C, Hornero R, Abásolo D, Fernández A, López M (2006) Complexity analysis of the magnetoencephalogram background activity in Alzheimer’s disease patients. Med Eng Phys 28(9):851–859. https://doi.org/10.1016/j.medengphy.2006.01.003

    Article  PubMed  Google Scholar 

  17. Gómez C, Dubbelink KT, Stam CJ, Abásolo D, Berendse HW, Hornero R (2011) Complexity analysis of resting-state MEG activity in early-stage Parkinson’s disease patients. Ann Biomed Eng 39(12):2935. https://doi.org/10.1007/s10439-011-0416-0

    Article  PubMed  Google Scholar 

  18. He BJ, Zempel JM, Snyder AZ, Raichle ME (2010) The temporal structures and functional significance of scale-free brain activity. Neuron 66(3):353–369. https://doi.org/10.1016/j.neuron.2010.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. He BJ (2014) Scale-free brain activity: past, present, and future. Trends Cogn Sci 18(9):480–487. https://doi.org/10.1016/j.tics.2014.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  20. Helson P, Lundqvist D, Svenningsson P, Vinding MC, Kumar A (2023) Cortex-wide topography of 1/f-exponent in Parkinson's disease. bioRxiv. https://doi.org/10.1101/2023.01.19.524792

    Article  Google Scholar 

  21. Höhn C, Hahn MA, Lendner JD, Hoedlmoser K (2022) Spectral slope and neural complexity as robust markers of task demand and brain state during sleep and wakefulness. bioRxiv. https://doi.org/10.1101/2022.09.10.507390

    Article  Google Scholar 

  22. Hong SL, Rebec GV (2012) A new perspective on behavioral inconsistency and neural noise in aging: compensatory speeding of neural communication. Front Aging Neurosci 25(4):27. https://doi.org/10.3389/fnagi.2012.00027

    Article  Google Scholar 

  23. Hornero R, Abásolo D, Escudero J, Gómez C (1887) Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer’s disease. Philos Trans A Math Phys Eng Sci 367(1887):317–336. https://doi.org/10.1098/rsta.2008.0197

    Article  Google Scholar 

  24. Iber C (2007) The AASM manual for the scoring of sleep and associated events: rules. Terminology and technical specification. Published online

  25. Lempel A, Ziv J (1976) On the complexity of finite sequences. IEEE Trans Inf Theory 22:75–81

    Article  Google Scholar 

  26. Lindén H, Pettersen KH, Einevoll GT (2010) Intrinsic dendritic filtering gives low-pass power spectra of local field potentials. J Comp Neurosci 29(3):423–444. https://doi.org/10.1007/s10827-010-0245-4

    Article  Google Scholar 

  27. Litvan I, Goldman JG, Tröster AI et al (2012) Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: movement disorder society task force guidelines. Mov Disord 27(3):349–356. https://doi.org/10.1002/mds.24893

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mazaheri A, Slagter HA, Thut G, Foxe JJ (2018) Orchestration of brain oscillations: principles *and functions. Eur J Neurosci 48(7):2385–2388. https://doi.org/10.1111/ejn.14189

    Article  PubMed  Google Scholar 

  29. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, Aarsland D, Galvin J, Attems J, Ballard CG, Bayston A (2017) Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 89:88–100. https://doi.org/10.1212/WNL.0000000000004058

    Article  PubMed  PubMed Central  Google Scholar 

  30. Medel V, Irani M, Crossley N, Ossandón T, Boncompte G (2020) Complexity and 1/f slope jointly reflect brain states. https://doi.org/10.1101/2020.09.15.298497

  31. Miskovic V, MacDonald KJ, Rhodes LJ, Cote KA (2019) Changes in EEG multiscale entropy and power-law frequency scaling during the human sleep cycle. Human Brain Mapp 40(2):538–551. https://doi.org/10.1002/hbm.24393

    Article  Google Scholar 

  32. Neumann WJ, Staub-Bartelt F, Horn A, Schanda J, Schneider GH, Brown P, Kühn AA (2017) Long term correlation of subthalamic beta band activity with motor impairment in patients with Parkinson’s disease. Clin Neurophysiol 128(11):2286–2291. https://doi.org/10.1016/j.clinph.2017.08.028

    Article  PubMed  PubMed Central  Google Scholar 

  33. Oostenveld R, Fries P, Maris E, Schoffelen JM (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. https://doi.org/10.1155/2011/156869

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ouyang G, Hildebrandt A, Schmitz F, Herrmann CS (2020) Decomposing alpha and 1/f brain activities reveals their differential associations with cognitive processing speed. Neuroimage 205:116304. https://doi.org/10.1016/j.neuroimage.2019.116304

    Article  PubMed  Google Scholar 

  35. Petersen RC, Lopez O, Armstrong MJ, Getchius TS, Ganguli M, Gloss D, Gronseth GS, Marson D, Pringsheim T, Day GS, Sager M (2018) Practice guideline update summary: mild cognitive impairment: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology. Neurology 90(3):126–135. https://doi.org/10.1212/WNL.0000000000004826

    Article  PubMed  PubMed Central  Google Scholar 

  36. Podvalny E, Noy N, Harel M, Bickel S, Chechik G, Schroeder CE, Mehta AD, Tsodyks M, Malach R (2015) A unifying principle underlying the extracellular field potential spectral responses in the human cortex. J Nerophysiol 114(1):505–519. https://doi.org/10.1152/jn.00943.2014

    Article  CAS  Google Scholar 

  37. Rosenblum Y, Maidan I, Fahoum F, Giladi N, Bregman N, Shiner T, Mirelman A (2020) Differential changes in visual and auditory event-related oscillations in dementia with Lewy bodies. Clin Neurophysiol 131(10):2357–2366. https://doi.org/10.1016/j.clinph.2020.06.029

    Article  PubMed  Google Scholar 

  38. Rosenblum Y, Maidan I, Goldstein O, Gana-Weisz M, Orr-Urtreger A, Bregman N, Giladi N, Mirelman A, Shiner T (2022) Decreased delta-band event-related power in dementia with Lewy bodies with a mutation in the glucocerebrosidase gene. Clin Neurophysiol 143:14–20. https://doi.org/10.1016/j.clinph.2022.08.011

    Article  PubMed  Google Scholar 

  39. Rosenblum Y, Shiner T, Bregman N, Fahoum F, Giladi N, Maidan I, Mirelman A (2022) Event-related oscillations differentiate between cognitive, motor and visual impairments. J Neurol. https://doi.org/10.1007/s00415-021-10953-4

    Article  PubMed  Google Scholar 

  40. Rosenblum Y, Bovy L, Weber FD, Steiger A, Zeising M, Dresler M (2022) Increased aperiodic neural activity during sleep in major depressive disorder. Biol Psychiatry. https://doi.org/10.1016/j.bpsgos.2022.10.001

    Article  Google Scholar 

  41. Sami S, Williams N, Hughes LE, Cope TE, Rittman T, Coyle-Gilchrist IT, Henson RN, Rowe JB (2018) Neurophysiological signatures of Alzheimer’s disease and frontotemporal lobar degeneration: pathology versus phenotype. Brain 141(8):2500–2510. https://doi.org/10.1093/brain/awy180

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schartner M, Seth A, Noirhomme Q, Boly M, Bruno MA, Laureys S, Barrett A (2015) Complexity of multi-dimensional spontaneous EEG decreases during propofol induced general anaesthesia. PLoS ONE 10(8):e0133532. https://doi.org/10.1371/journal.pone.0133532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schartner MM, Carhart-Harris RL, Barrett AB, Seth AK, Muthukumaraswamy SD (2017) Increased spontaneous MEG signal diversity for psychoactive doses of ketamine, LSD and psilocybin. Sci Rep 7(1):1–2. https://doi.org/10.1038/srep46421

    Article  CAS  Google Scholar 

  44. Schneider B, Szalárdy O, Ujma PP, Simor P, Gombos F, Kovács I, Dresler M, Bódizs R (2022) Scale-free and oscillatory spectral measures of sleep stages in humans. bioRxiv. https://doi.org/10.3389/fninf.2022.989262

    Article  Google Scholar 

  45. Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6(4):285–296. https://doi.org/10.1038/nrn1650

    Article  CAS  PubMed  Google Scholar 

  46. Shumbayawonda E, López-Sanz D, Bruña R, Serrano N, Fernández A, Maestú F, Abasolo D (2020) Complexity changes in preclinical Alzheimer’s disease: an MEG study of subjective cognitive decline and mild cognitive impairment. Clin Neurophysiol 131(2):437–445. https://doi.org/10.1016/j.clinph.2019.11.023

    Article  PubMed  Google Scholar 

  47. Stam CJ (2005) Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 116(10):2266–2301. https://doi.org/10.1016/j.clinph.2005.06.011

    Article  CAS  PubMed  Google Scholar 

  48. Su L, Blamire A, Watson R, He J, Hayes L, O’Brien JT (2016) Whole-brain patterns of 1H-magnetic resonance spectroscopy imaging in Alzheimer’s disease and dementia with Lewy bodies. Transl Psychiatry 6(8):e877. https://doi.org/10.1038/tp.2016.140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Timmermann C, Roseman L, Schartner M, Milliere R, Williams LT, Erritzoe D, Muthukumaraswamy S, Ashton M, Bendrioua A, Kaur O, Turton S (2019) Neural correlates of the DMT experience assessed with multivariate EEG. Sci Rep 9(1):1–3. https://doi.org/10.1002/glia.20201

    Article  CAS  Google Scholar 

  50. Vinding M, Eriksson A, Manting C, Waldthaler J, Ferreira D, Ingvar M, Svenningsson P, Lundqvist D (2022) Changes in non-oscillatory features of the cortical sensorimotor rhythm in Parkinson's disease across age. https://doi.org/10.21203/rs.3.rs-1699006/v1

  51. Voytek B, Kramer MA, Case J, Lepage KQ, Tempesta ZR, Knight RT, Gazzaley A (2015) Age-related changes in 1/f neural electrophysiological noise. J Neurosci 35(38):13257–13265. https://doi.org/10.1523/JNEUROSCI.2332-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Waschke L, Donoghue T, Fiedler L, Smith S, Garrett DD, Voytek B, Obleser J (2021) Modality-specific tracking of attention and sensory statistics in the human electrophysiological spectral exponent. Elife. https://doi.org/10.1101/2021.01.13.426522

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wen H, Liu Z (2016) Separating fractal and oscillatory components in the power spectrum of neurophysiological signal. Brain Topogr 29(1):13–26. https://doi.org/10.1007/s10548-015-0448-0

    Article  PubMed  Google Scholar 

  54. Wiest C, Torrecillos F, Pogosyan A, Bange M, Muthuraman M, Groppa S, Hulse N, Hasegawa H, Ashkan K, Baig F, Morgante F (2023) The aperiodic exponent of subthalamic field potentials reflects excitation/inhibition balance in Parkinsonism. Elife 12:e82467. https://elifesciences.org/articles/82467?s=03

  55. Zhang J, Villringer A, Nikulin VV (2022) Dopaminergic modulation of local non-oscillatory activity and global-network properties in Parkinson’s disease: an EEG study. Front Aging Neurosci 14:846017. https://doi.org/10.3389/fnagi.2022.846017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all the volunteers and patients who participated in this study as well as the patients' caregivers.

Funding

The study was internally funded.

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: YR, AM; data acquisition: YR, TS; data analysis and interpretation: YR; drafting the article: YR; critical revision of the manuscript for important intellectual content: YR, IM, FF, NB, NG, TS, AM. All authors approved the final version.

Corresponding author

Correspondence to Anat Mirelman.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical standard

The study was approved by the local ethical committee and was performed according to the Principles of the Declaration of Helsinki.

Informed consent

All participants signed informed written consent prior to their participation.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 170 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenblum, Y., Shiner, T., Bregman, N. et al. Decreased aperiodic neural activity in Parkinson’s disease and dementia with Lewy bodies. J Neurol 270, 3958–3969 (2023). https://doi.org/10.1007/s00415-023-11728-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-023-11728-9

Keywords

Navigation