Skip to main content
Log in

Does visuospatial motion perception correlate with coexisting movement disorders in Parkinson’s disease?

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Postural instability and balance impairment are common in Parkinson's disease (PD). Multiple factors, such as increased tone, bradykinesia, freezing of gait, posture, axial stiffness, and involuntary appendicular movements, can affect balance. The recent studies found that PD patients have abnormal perception of self-motion in vestibular domain. We asked whether measures of balance function, such as perception of one’s motion, correlate with specific movement disorders seen in PD. Moving retinal image or self-motion in space triggers the perception of self-motion. We measured one’s linear motion (heading) perception when subjects were moved en bloc using a moving platform (vestibular heading). Similar motion perception was generated in the visual domain (visual heading) by having the subjects view a 3D optical flow with immersive virtual reality goggles. During both tasks, the subjects reported the motion direction in the two-alternative-forced-choice paradigm. The accuracy of perceived motion direction was calculated from the responses fitted to the psychometric function curves to estimate how accurately and precisely the subjects can perceive rightward versus leftward motion (i.e., threshold and slope). Response accuracies and psychometric parameters were correlated with the disease duration, disease severity (total Unified Parkinson’s Disease Rating Scale-III, UPDRS-III), and tremor, rigidity, axial, gait/posture components of UPRDS-III. We also correlated heading perception with the number of falls and subjective assessment of balance confidence using the Activities-Specific Balance Component (ABC) Scale. Accuracy, threshold, and sensitivity of vestibular heading perception significantly correlated with the disease duration and severity, particularly the tremor. Correlations were stronger for leftward heading perception in the vestibular domain. The visual heading perception was correlated with ABC Scale, especially with its items concerning optic-flow processing. There was asymmetry in leftward versus rightward vestibular heading perception. The level of asymmetry correlated with the axial component of UPDRS-III. Differences in the clinical parameters that correlate with visual versus vestibular heading perception suggest that two heading perception processes have different mechanistic underpinnings. The correlation of discordance between vestibular and visual heading perception with disease severity and duration suggests that visual function can be utilized for balance rehab in PD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kerr GK, Worringham CJ, Cole MH et al (2010) Predictors of future falls in Parkinson disease. Neurology 75:116–124. https://doi.org/10.1212/WNL.0b013e3181e7b688

    Article  CAS  PubMed  Google Scholar 

  2. Rahman S, Griffin HJ, Quinn NP, Jahanshahi M (2008) Quality of life in Parkinson’s disease: the relative importance of the symptoms. Mov Disord 23:1428–1434. https://doi.org/10.1002/mds.21667

    Article  PubMed  Google Scholar 

  3. Williams DR, Watt HC, Lees AJ (2006) Predictors of falls and fractures in bradykinetic rigid syndromes: a retrospective study. J Neurol Neurosurg Psychiatry 77:468–473. https://doi.org/10.1136/jnnp.2005.074070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stolze H, Klebe S, Zechlin C et al (2004) Falls in frequent neurological diseases–prevalence, risk factors and aetiology. J Neurol 251:79–84. https://doi.org/10.1007/s00415-004-0276-8

    Article  PubMed  Google Scholar 

  5. Pickering RM, Grimbergen YAM, Rigney U et al (2007) A meta-analysis of six prospective studies of falling in Parkinson’s disease. Mov Disord 22:1892–1900. https://doi.org/10.1002/mds.21598

    Article  PubMed  Google Scholar 

  6. Bloem BR, Grimbergen YAM, Cramer M et al (2001) Prospective assessment of falls in Parkinson’s disease. J Neurol 248:950–958. https://doi.org/10.1007/s004150170047

    Article  CAS  PubMed  Google Scholar 

  7. Forbes PA, Chen A, Blouin J-S (2018) Chapter 4—sensorimotor control of standing balance. In: Day BL, Lord SR (eds) Handbook of clinical neurology. Elsevier, pp 61–83

    Google Scholar 

  8. Angelaki DE, Cullen KE (2008) Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 31:125–150. https://doi.org/10.1146/annurev.neuro.31.060407.125555

    Article  CAS  PubMed  Google Scholar 

  9. Britton TC, Day BL, Brown P et al (1993) Postural electromyographic responses in the arm and leg following galvanic vestibular stimulation in man. Exp Brain Res 94:143–151. https://doi.org/10.1007/BF00230477

    Article  CAS  PubMed  Google Scholar 

  10. Fitzpatrick R, McCloskey DI (1994) Proprioceptive, visual and vestibular thresholds for the perception of sway during standing in humans. J Physiol 478:173–186. https://doi.org/10.1113/jphysiol.1994.sp020240

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fitzpatrick R, Burke D, Gandevia SC (1994) Task-dependent reflex responses and movement illusions evoked by galvanic vestibular stimulation in standing humans. J Physiol 478:363–372

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cathers I, Day BL, Fitzpatrick RC (2005) Otolith and canal reflexes in human standing. J Physiol 563:229–234. https://doi.org/10.1113/jphysiol.2004.079525

    Article  CAS  PubMed  Google Scholar 

  13. Serrador JM, Lipsitz LA, Gopalakrishnan GS et al (2009) Loss of otolith function with age is associated with increased postural sway measures. Neurosci Lett 465:10–15. https://doi.org/10.1016/j.neulet.2009.08.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iwasaki S, Yamasoba T (2014) Dizziness and imbalance in the elderly: age-related decline in the vestibular system. Aging Dis 6:38–47. https://doi.org/10.14336/AD.2014.0128

    Article  PubMed  PubMed Central  Google Scholar 

  15. Allen D, Ribeiro L, Arshad Q, Seemungal BM (2017) Age-related vestibular loss: current understanding and future research directions. Front Neurol 7:231. https://doi.org/10.3389/fneur.2016.00231

    Article  Google Scholar 

  16. Karmali F, Bermúdez Rey MC, Clark TK et al (2017) Multivariate analyses of balance test performance, vestibular thresholds, and age. Front Neurol 8:578. https://doi.org/10.3389/fneur.2017.00578

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bermúdez Rey MC, Clark TK, Wang W et al (2016) Vestibular perceptual thresholds increase above the age of 40. Front Neurol 7:162. https://doi.org/10.3389/fneur.2016.00162

    Article  PubMed  PubMed Central  Google Scholar 

  18. Beylergil SB, Karmali F, Wang W et al (2019) Vestibular roll tilt thresholds partially mediate age-related effects on balance. Prog Brain Res 248:249–267. https://doi.org/10.1016/bs.pbr.2019.04.019

    Article  PubMed  Google Scholar 

  19. Piras A, Raffi M, Perazzolo M, Squatrito S (2018) Influence of heading perception in the control of posture. J Electromyogr Kinesiol 39:89–94. https://doi.org/10.1016/j.jelekin.2018.02.001

    Article  PubMed  Google Scholar 

  20. Persiani M, Piras A, Squatrito S, Raffi M (2015) Laterality of stance during optic flow stimulation in male and female young adults. BioMed Res Int 2015:e542645. https://doi.org/10.1155/2015/542645

    Article  Google Scholar 

  21. Raffi M, Piras A, Persiani M et al (2017) Angle of gaze and optic flow direction modulate body sway. J Electromyogr Kinesiol 35:61–68. https://doi.org/10.1016/j.jelekin.2017.05.008

    Article  PubMed  Google Scholar 

  22. Raffi M, Piras A, Persiani M, Squatrito S (2014) Importance of optic flow for postural stability of male and female young adults. Eur J Appl Physiol 114:71–83. https://doi.org/10.1007/s00421-013-2750-4

    Article  PubMed  Google Scholar 

  23. Berard JR, Fung J, McFadyen BJ, Lamontagne A (2009) Aging affects the ability to use optic flow in the control of heading during locomotion. Exp Brain Res 194:183–190. https://doi.org/10.1007/s00221-008-1685-1

    Article  PubMed  Google Scholar 

  24. Yeh S-C, Chen S, Wang P-C et al (2014) Interactive 3-dimensional virtual reality rehabilitation for patients with chronic imbalance and vestibular dysfunction. Technol Health Care 22:915–921. https://doi.org/10.3233/THC-140855

    Article  PubMed  Google Scholar 

  25. Cronin T, Arshad Q, Seemungal BM (2017) Vestibular deficits in neurodegenerative disorders: balance, dizziness, and spatial disorientation. Front Neurol 8:538. https://doi.org/10.3389/fneur.2017.00538

    Article  PubMed  PubMed Central  Google Scholar 

  26. Smith PF (2018) Vestibular functions and Parkinson’s disease. Front Neurol. https://doi.org/10.3389/fneur.2018.01085

    Article  PubMed  PubMed Central  Google Scholar 

  27. Acarer A, Karapolat H, Celebisoy N et al (2015) Is customized vestibular rehabilitation effective in patients with Parkinson’s? NeuroRehabilitation 37:255–262. https://doi.org/10.3233/NRE-151258

    Article  PubMed  Google Scholar 

  28. Zeigelboim BS, Klagenberg KF, Teive HAG et al (2009) Vestibular rehabilitation: clinical benefits to patients with Parkinson’s disease. Arq Neuropsiquiatr 67:219–223. https://doi.org/10.1590/S0004-282X2009000200009

    Article  PubMed  Google Scholar 

  29. Rossi-Izquierdo M, Soto-Varela A, Santos-Pérez S et al (2009) Vestibular rehabilitation with computerised dynamic posturography in patients with Parkinson’s disease: improving balance impairment. Disabil Rehabil 31:1907–1916. https://doi.org/10.1080/09638280902846384

    Article  PubMed  Google Scholar 

  30. Gu Y, Angelaki DE, DeAngelis GC (2008) Neural correlates of multisensory cue integration in macaque MSTd. Nat Neurosci 11:1201–1210. https://doi.org/10.1038/nn.2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fetsch CR, Turner AH, DeAngelis GC, Angelaki DE (2009) Dynamic reweighting of visual and vestibular cues during self-motion perception. J Neurosci 29:15601–15612. https://doi.org/10.1523/JNEUROSCI.2574-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hlavacka F, Mergner Th, Bolha B (1996) Human self-motion perception during translatory vestibular and proprioceptive stimulation. Neurosci Lett 210:83–86. https://doi.org/10.1016/0304-3940(96)12667-7

    Article  CAS  PubMed  Google Scholar 

  33. Barmack NH (2003) Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 60:511–541. https://doi.org/10.1016/S0361-9230(03)00055-8

    Article  PubMed  Google Scholar 

  34. Meng H, Angelaki DE (2009) Responses of ventral posterior thalamus neurons to three-dimensional vestibular and optic flow stimulation. J Neurophysiol 103:817–826. https://doi.org/10.1152/jn.00729.2009

    Article  PubMed  PubMed Central  Google Scholar 

  35. Grüsser OJ, Pause M, Schreiter U (1990) Localization and responses of neurones in the parieto-insular vestibular cortex of awake monkeys (Macaca fascicularis). J Physiol 430:537–557. https://doi.org/10.1113/jphysiol.1990.sp018306

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen A, DeAngelis GC, Angelaki DE (2013) Functional specializations of the ventral intraparietal area for multisensory heading discrimination. J Neurosci 33:3567–3581. https://doi.org/10.1523/JNEUROSCI.4522-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bostan AC, Strick PL (2010) The cerebellum and basal ganglia are interconnected. Neuropsychol Rev 20:261–270. https://doi.org/10.1007/s11065-010-9143-9

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bostan AC, Dum RP, Strick PL (2010) The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci 107:8452–8456. https://doi.org/10.1073/pnas.1000496107

    Article  PubMed  PubMed Central  Google Scholar 

  39. Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 31:236–250. https://doi.org/10.1016/S0165-0173(99)00040-5

    Article  CAS  PubMed  Google Scholar 

  40. Stiles L, Smith PF (2015) The vestibular–basal ganglia connection: balancing motor control. Brain Res 1597:180–188. https://doi.org/10.1016/j.brainres.2014.11.063

    Article  CAS  PubMed  Google Scholar 

  41. Beylergil SB, Ozinga S, Walker MF et al (2019) Vestibular heading perception in Parkinson’s disease. Prog Brain Res 249:307–319. https://doi.org/10.1016/bs.pbr.2019.03.034

    Article  PubMed  Google Scholar 

  42. Beylergil SB, Petersen M, Gupta P et al (2021) Severity-dependent effects of Parkinson’s disease on perception of visual and vestibular heading. Mov Disord 36:360–369. https://doi.org/10.1002/mds.28352

    Article  PubMed  Google Scholar 

  43. Goetz CG, Tilley BC, Shaftman SR et al (2008) Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23:2129–2170. https://doi.org/10.1002/mds.22340

    Article  PubMed  Google Scholar 

  44. Stebbins GT, Goetz CG (1998) Factor structure of the unified Parkinson’s disease rating scale: motor examination section. Mov Disord 13:633–636. https://doi.org/10.1002/mds.870130404

    Article  CAS  PubMed  Google Scholar 

  45. Powell LE, Myers AM (1995) The activities-specific balance confidence (ABC) scale. J Gerontol Ser A 50A:M28–M34. https://doi.org/10.1093/gerona/50A.1.M28

    Article  CAS  Google Scholar 

  46. Wichmann FA, Hill NJ (2001) The psychometric function: I. Fitting, sampling, and goodness of fit. Percept Psychophys 63:1293–1313. https://doi.org/10.3758/bf03194544

    Article  CAS  PubMed  Google Scholar 

  47. Strasburger H (2001) Converting between measures of slope of the psychometric function. Percept Psychophys 63:1348–1355. https://doi.org/10.3758/BF03194547

    Article  CAS  PubMed  Google Scholar 

  48. R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  49. Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J et al (2003) Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119:293–308. https://doi.org/10.1016/S0306-4522(03)00095-2

    Article  CAS  PubMed  Google Scholar 

  50. Cooke JD, Brown JD, Brooks VB (1978) Increased dependence on visual information for movement control in patients with Parkinson’s disease. Can J Neurol Sci J Can Sci Neurol 5:413–415. https://doi.org/10.1017/s0317167100024197

    Article  CAS  Google Scholar 

  51. Azulay J-P, Mesure S, Amblard B, Pouget J (2002) Increased visual dependence in Parkinson’s disease. Percept Mot Skills 95:1106–1114. https://doi.org/10.2466/pms.2002.95.3f.1106

    Article  PubMed  Google Scholar 

  52. Azulay J-P, Mesure S, Amblard B et al (1999) Visual control of locomotion in Parkinson’s disease. Brain 122:111–120

    Article  PubMed  Google Scholar 

  53. Azulay J-P, Mesure S, Blin O (2006) Influence of visual cues on gait in Parkinson’s disease: contribution to attention or sensory dependence? J Neurol Sci 248:192–195. https://doi.org/10.1016/j.jns.2006.05.008

    Article  PubMed  Google Scholar 

  54. Dieterich M, Bense S, Lutz S et al (2003) Dominance for vestibular cortical function in the non-dominant hemisphere. Cereb Cortex 13:994–1007. https://doi.org/10.1093/cercor/13.9.994

    Article  CAS  PubMed  Google Scholar 

  55. Kinsbourne M (1977) Hemi-neglect and hemisphere rivalry. Hemi-inattention and hemisphere specialization. Raven Press, New York, pp 41–49

    Google Scholar 

  56. Seemungal BM, Rizzo V, Gresty MA et al (2008) Posterior parietal rTMS disrupts human path integration during a vestibular navigation task. Neurosci Lett 437:88–92. https://doi.org/10.1016/j.neulet.2008.03.067

    Article  CAS  PubMed  Google Scholar 

  57. Kaski D, Quadir S, Nigmatullina Y et al (2016) Temporoparietal encoding of space and time during vestibular-guided orientation. Brain 139:392–403. https://doi.org/10.1093/brain/awv370

    Article  PubMed  Google Scholar 

  58. Tootell RBH, Mendola JD, Hadjikhani NK et al (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17:7060–7078. https://doi.org/10.1523/JNEUROSCI.17-18-07060.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Seiffert AE, Somers DC, Dale AM, Tootell RBH (2003) Functional MRI studies of human visual motion perception: texture, luminance, attention and after-effects. Cereb Cortex 13:340–349. https://doi.org/10.1093/cercor/13.4.340

    Article  PubMed  Google Scholar 

  60. Duffy CJ (2009) Visual motion processing in aging and Alzheimer’s disease. Ann N Y Acad Sci 1170:736–744. https://doi.org/10.1111/j.1749-6632.2009.04021.x

    Article  PubMed  Google Scholar 

  61. Pitzalis S, Galletti C, Huang R-S et al (2006) Wide-field retinotopy defines human cortical visual area V6. J Neurosci 26:7962–7973. https://doi.org/10.1523/JNEUROSCI.0178-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cardin V, Smith AT (2010) Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cereb Cortex 20:1964–1973. https://doi.org/10.1093/cercor/bhp268

    Article  PubMed  Google Scholar 

  63. Wall MB, Smith AT (2008) The representation of egomotion in the human brain. Curr Biol CB 18:191–194. https://doi.org/10.1016/j.cub.2007.12.053

    Article  CAS  PubMed  Google Scholar 

  64. Putcha D, Ross RS, Rosen ML et al (2014) Functional correlates of optic flow motion processing in Parkinson’s disease. Front Integr Neurosci 8:57. https://doi.org/10.3389/fnint.2014.00057

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yakusheva TA, Shaikh AG, Green AM et al (2007) Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron 54:973–985. https://doi.org/10.1016/j.neuron.2007.06.003

    Article  CAS  PubMed  Google Scholar 

  66. Shaikh AG, Ghasia FF, Dickman JD, Angelaki DE (2005) Properties of cerebellar fastigial neurons during translation, rotation, and eye movements. J Neurophysiol 93:853–863. https://doi.org/10.1152/jn.00879.2004

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Grants from The American Academy of Neurology (Shaikh), American Parkinson’s Disease Association George C Cotzias Memorial Fellowship (Shaikh), Dystonia Medical Research Foundation Research (Shaikh), and Department of Veterans Affairs (I01 CX002086-01A2) and philanthropic funds to the Department of Neurology at University Hospitals (The Allan Woll Fund and The Fox Fund) supported this research. Shaikh holds Penni and Steven Weinberg Chair in Brain Health. The authors thank Cameron McIntyre, PhD, Sarah Ozinga, PhD, and Mark Walker, MD for their support.

Funding

This work was supported by American Academy of Neurology Career Award (Shaikh), Department of Veterans Affairs Clinical Science R & D Merit Review Grant (I01 CX002086-01A2) (Shaikh), American Parkinson’s Disease Association George C Cotzias Memorial Fellowship (Shaikh), Dystonia Medical Research Foundation Research Grant (Shaikh), and philanthropic funds to the Department of Neurology at University Hospitals (The Allan Woll Fund and The Fox Family Fund). Dr.Shaikh has Penni and Stephen Weinberg Chair in Brain Health.

Author information

Authors and Affiliations

Authors

Contributions

SBB: collected data, conceptualized analysis, performed analysis, written and edited manuscript; PG: collected data, edited manuscript; CK and ME: collected data, edited manuscript; AGS: conceptualized project, analysis, collected data, performed analysis, written and edited manuscript.

Corresponding author

Correspondence to Aasef G. Shaikh.

Ethics declarations

Conflicts of interest

CK has received honoraria from Medtronic Inc to serve as an advisor.

Data and code availability

Deidentified data and software codes will be made available to the interested party after preparing appropriate institutional agreements and approvals.

Ethics approval

Institutional Review Boards at Cleveland VA Medical Center approved this study.

Consent to participate

The subjects signed informed consent form prior to participating in the study.

Consent to publish

Authors consented to publish their work. Patients consented to publish their deidentified data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beylergil, S.B., Gupta, P., ElKasaby, M. et al. Does visuospatial motion perception correlate with coexisting movement disorders in Parkinson’s disease?. J Neurol 269, 2179–2192 (2022). https://doi.org/10.1007/s00415-021-10804-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-021-10804-2

Keywords

Navigation