Skip to main content
Log in

Mitochondrial genome variations are associated with amyotrophic lateral sclerosis in patients from mainland China

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder. Mitochondrial dysfunction is involved in the complex pathophysiology of ALS; however, the role of mitochondrial DNA (mtDNA) variants in ALS is poorly understood. We aimed to elucidate the role of mtDNA variants in the pathogenesis of ALS.

Methods

The mitochondrial haplogroups of 585 ALS patients and 371 healthy controls were determined; 38 ALS patients and 42 controls underwent long-range polymerase chain reaction combined with next-generation sequencing technology to analyze whole mitochondrial genome variants.

Results

A higher percentage of variants accumulated in ALS patients than in controls. Analysis of coding region variations that were further stratified by mtDNA genes revealed that nonsynonymous variants were more vulnerable in ALS patients than in controls, particularly in the ND4L, ND5, and ATP8 genes. Moreover, pathogenic nonsynonymous variants tended to over-represent in ALS patients. Unsurprisingly, nonsynonymous variants were not related to the phenotype. Haplogroup analysis did not found evidence of association between haplogroups with the risk of ALS, however, patients belonging to haplogroup Y and M7c were prone to develop later onset of ALS.

Conclusions

This is the first study to profile mtDNA variants in ALS patients from mainland China. Our results suggest that an increase in the number of nonsynonymous variants is linked to the pathogenesis of ALS. Moreover, haplogroup Y and M7c may modulate the clinical expression of ALS. Our findings provide independent, albeit limited, evidence for the role of mtDNA in the pathogenesis of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, van den Berg LH (2017) Amyotrophic lateral sclerosis. Lancet 390:2084–2098. https://doi.org/10.1016/S0140-6736(17)31287-4

    Article  PubMed  Google Scholar 

  2. Ghasemi M, Brown RH Jr (2018) Genetics of amyotrophic lateral sclerosis. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a024125

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chia R, Chiò A, Traynor BJ (2018) Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol 17:94–102. https://doi.org/10.1016/s1474-4422(17)30401-5

    Article  CAS  PubMed  Google Scholar 

  4. Cha MY, Kim DK, Mook-Jung I (2015) The role of mitochondrial DNA mutation on neurodegenerative diseases. Exp Mol Med 47:e150. https://doi.org/10.1038/emm.2014.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ryan TE, Erickson ML, Verma A, Chavez J, Rivner MH, McCully KK (2014) Skeletal muscle oxidative capacity in amyotrophic lateral sclerosis. Muscle Nerve 50:767–774. https://doi.org/10.1002/mus.24223

    Article  CAS  PubMed  Google Scholar 

  6. Ladd AC, Brohawn DG, Thomas RR, Keeney PM, Berr SS, Khan SM, Portell FR, Shakenov MZ, Antkowiak PF, Kundu B, Tustison N, Bennett JP (2017) RNA-seq analyses reveal that cervical spinal cords and anterior motor neurons from amyotrophic lateral sclerosis subjects show reduced expression of mitochondrial DNA-encoded respiratory genes, and rhTFAM may correct this respiratory deficiency. Brain Res 1667:74–83. https://doi.org/10.1016/j.brainres.2017.05.010

    Article  CAS  PubMed  Google Scholar 

  7. Stoccoro A, Mosca L, Carnicelli V, Cavallari U, Lunetta C, Marocchi A, Migliore L, Coppedè F (2018) Mitochondrial DNA copy number and D-loop region methylation in carriers of amyotrophic lateral sclerosis gene mutations. Epigenomics 10:1431–1443. https://doi.org/10.2217/epi-2018-0072

    Article  CAS  PubMed  Google Scholar 

  8. Tuppen HA, Blakely EL, Turnbull DM, Taylor RW (2010) Mitochondrial DNA mutations and human disease. Biochim Biophys Acta 1797:113–128. https://doi.org/10.1016/j.bbabio.2009.09.005

    Article  CAS  PubMed  Google Scholar 

  9. Zhang W, Tang J, Zhang AM, Peng MS, Xie HB, Tan L, Xu L, Zhang YP, Chen X, Yao YG (2014) A matrilineal genetic legacy from the last glacial maximum confers susceptibility to schizophrenia in Han Chinese. J Genet Genomics 41:397–407. https://doi.org/10.1016/j.jgg.2014.05.004

    Article  PubMed  Google Scholar 

  10. Lynch D, Wanglund C, Spathis R, Chan CW, Reiff DM, Lum JK, Garruto RM (2008) The contribution of mitochondrial dysfunction to a gene-environment model of Guamanian ALS and PD. Mitochondrion 8:109–116. https://doi.org/10.1016/j.mito.2007.09.002

    Article  CAS  PubMed  Google Scholar 

  11. Reiff DM, Spathis R, Chan CW, Vilar MG, Sankaranarayanan K, Lynch D, Ehrlich E, Kerath S, Chowdhury R, Robinowitz L, Koji Lum J, Garruto RM (2011) Inherited and somatic mitochondrial DNA mutations in Guam amyotrophic lateral sclerosis and parkinsonism-dementia. Neurol Sci 32:883–892. https://doi.org/10.1007/s10072-011-0735-9

    Article  PubMed  Google Scholar 

  12. Keeney PM, Bennett JP Jr (2010) ALS spinal neurons show varied and reduced mtDNA gene copy numbers and increased mtDNA gene deletions. Mol Neurodegener 5:21. https://doi.org/10.1186/1750-1326-5-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Artuso L, Zoccolella S, Favia P, Amati A, Capozzo R, Logroscino G, Serlenga L, Simone I, Gasparre G, Petruzzella V (2013) Mitochondrial genome aberrations in skeletal muscle of patients with motor neuron disease. Amyotroph Lateral Scler Frontotemporal Degener 14:261–266. https://doi.org/10.3109/21678421.2012.735239

    Article  CAS  PubMed  Google Scholar 

  14. Mancuso M, Conforti FL, Rocchi A, Tessitore A, Muglia M, Tedeschi G, Panza D, Monsurrò M, Sola P, Mandrioli J, Choub A, DelCorona A, Manca ML, Mazzei R, Sprovieri T, Filosto M, Salviati A, Valentino P, Bono F, Caracciolo M, Simone IL, La Bella V, Majorana G, Siciliano G, Murri L, Quattrone A (2004) Could mitochondrial haplogroups play a role in sporadic amyotrophic lateral sclerosis? Neurosci Lett 371:158–162. https://doi.org/10.1016/j.neulet.2004.08.060

    Article  CAS  PubMed  Google Scholar 

  15. Ingram CJ, Weale ME, Plaster CA, Morrison KE, Goodall EF, Pall HS, Beck M, Jablonka S, Sendtner M, Fisher EM, Bradman N, Kasperavičiūtė D (2012) Analysis of European case-control studies suggests that common inherited variation in mitochondrial DNA is not involved in susceptibility to amyotrophic lateral sclerosis. Amyotroph Lateral Scler 13:341–346. https://doi.org/10.3109/17482968.2012.654394

    Article  CAS  PubMed  Google Scholar 

  16. Wei W, Keogh MJ, Wilson I, Coxhead J, Ryan S, Rollinson S, Griffin H, Kurzawa-Akanbi M, Santibanez-Koref M, Talbot K, Turner MR, McKenzie CA, Troakes C, Attems J, Smith C, Al Sarraj S, Morris CM, Ansorge O, Pickering-Brown S, Ironside JW, Chinnery PF (2017) Mitochondrial DNA point mutations and relative copy number in 1363 disease and control human brains. Acta Neuropathol Commun 5:13. https://doi.org/10.1186/s40478-016-0404-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bris C, Goudenege D, Desquiret-Dumas V, Charif M, Colin E, Bonneau D, Amati-Bonneau P, Lenaers G, Reynier P, Procaccio V (2018) Bioinformatics tools and databases to assess the pathogenicity of mitochondrial DNA variants in the field of next generation sequencing. Front Genet 9:632. https://doi.org/10.3389/fgene.2018.00632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ludolph A, Drory V, Hardiman O, Nakano I, Ravits J, Robberecht W, Shefner J (2015) A revision of the El escorial criteria— 2015. Amyotroph Lateral Scler Frontotemporal Degener 16:291–292. https://doi.org/10.3109/21678421.2015.1049183

    Article  PubMed  Google Scholar 

  19. Zhang W, Cui H, Wong LJ (2012) Comprehensive one-step molecular analyses of mitochondrial genome by massively parallel sequencing. Clin Chem 58:1322–1331. https://doi.org/10.1373/clinchem.2011.181438

    Article  CAS  PubMed  Google Scholar 

  20. Yuan H, Yang H, Peng L, Peng Y, Chen Z, Wan L, Wang C, Shi Y, Zhang VW, Tang B, Qiu R, Jiang H (2020) Profiling of mitochondrial genomes in SCA3/MJD patients from mainland China. Gene 738:144487. https://doi.org/10.1016/j.gene.2020.144487

    Article  CAS  PubMed  Google Scholar 

  21. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147. https://doi.org/10.1038/13779

    Article  CAS  PubMed  Google Scholar 

  22. Fan L, Yao YG (2013) An update to MitoTool: using a new scoring system for faster mtDNA haplogroup determination. Mitochondrion 13:360–363. https://doi.org/10.1016/j.mito.2013.04.011

    Article  CAS  PubMed  Google Scholar 

  23. Preste R, Vitale O, Clima R, Gasparre G, Attimonelli M (2019) HmtVar: a new resource for human mitochondrial variations and pathogenicity data. Nucleic Acids Res 47:D1202–D1210. https://doi.org/10.1093/nar/gky1024

    Article  PubMed  Google Scholar 

  24. Lott MT, Leipzig JN, Derbeneva O, Xie HM, Chalkia D, Sarmady M, Procaccio V, Wallace DC (2013) mtDNA variation and analysis using mitomap and mitomaster. Curr Protoc Bioinf 44(1):1–23. https://doi.org/10.1002/0471250953.bi0123s44

    Article  Google Scholar 

  25. Tang S, Wang J, Zhang VW, Li FY, Landsverk M, Cui H, Truong CK, Wang G, Chen LC, Graham B, Scaglia F, Schmitt ES, Craigen WJ, Wong LJ (2013) Transition to next generation analysis of the whole mitochondrial genome: a summary of molecular defects. Hum Mutat 34:882–893. https://doi.org/10.1002/humu.22307

    Article  CAS  PubMed  Google Scholar 

  26. Kennedy SR, Salk JJ, Schmitt MW, Loeb LA (2013) Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet 9:e1003794. https://doi.org/10.1371/journal.pgen.1003794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoekstra JG, Hipp MJ, Montine TJ, Kennedy SR (2016) Mitochondrial DNA mutations increase in early stage Alzheimer disease and are inconsistent with oxidative damage. Ann Neurol 80:301–306. https://doi.org/10.1002/ana.24709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coxhead J, Kurzawa-Akanbi M, Hussain R, Pyle A, Chinnery P, Hudson G (2016) Somatic mtDNA variation is an important component of Parkinson’s disease. Neurobiol Aging 38:217.e211-217.e216. https://doi.org/10.1016/j.neurobiolaging.2015.10.036

    Article  CAS  Google Scholar 

  29. Siddiqui A, Rivera-Sánchez S, Castro Mdel R, Acevedo-Torres K, Rane A, Torres-Ramos CA, Nicholls DG, Andersen JK, Ayala-Torres S (2012) Mitochondrial DNA damage is associated with reduced mitochondrial bioenergetics in Huntington’s disease. Free Radic Biol Med 53:1478–1488. https://doi.org/10.1016/j.freeradbiomed.2012.06.008

    Article  CAS  PubMed  Google Scholar 

  30. Murata T, Ohtsuka C, Terayama Y (2008) Increased mitochondrial oxidative damage and oxidative DNA damage contributes to the neurodegenerative process in sporadic amyotrophic lateral sclerosis. Free Radic Res 42:221–225. https://doi.org/10.1080/10715760701877262

    Article  CAS  PubMed  Google Scholar 

  31. Bi R, Zhang W, Yu D, Li X, Wang HZ, Hu QX, Zhang C, Lu W, Ni J, Fang Y, Li T, Yao YG (2015) Mitochondrial DNA haplogroup B5 confers genetic susceptibility to Alzheimer’s disease in Han Chinese. Neurobiol Aging 36:1604.e1607-1616. https://doi.org/10.1016/j.neurobiolaging.2014.10.009

    Article  CAS  Google Scholar 

  32. Chen YF, Chen WJ, Lin XZ, Zhang QJ, Cai JP, Liou CW, Wang N (2015) Mitochondrial DNA haplogroups and the risk of sporadic Parkinson’s disease in Han Chinese. Chin Med J (Engl) 128:1748–1754. https://doi.org/10.4103/0366-6999.159348

    Article  CAS  Google Scholar 

  33. Chinnery PF, Mowbray C, Elliot H, Elson JL, Nixon H, Hartley J, Shaw PJ (2007) Mitochondrial DNA haplogroups and amyotrophic lateral sclerosis. Neurogenetics 8:65–67. https://doi.org/10.1007/s10048-006-0066-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the participating patients for their involvement.

Funding

This work was supported by the National Key Research and Development Program of China (#2018YFC1312003); the Program of National Natural Science Foundation of China (#81671120, 81300981); and Natural Science Fund for Distinguished Young Scholars of Hunan province, China (#2020JJ2057); the Project Program of National Clinical Research Center for Geriatric Disorders (Xiangya Hospital) (#2020LNJJ13); and the Degree & Postgraduate Education Reform Project of Central South University (#2020JGB136).

Author information

Authors and Affiliations

Authors

Contributions

Formal analysis: JN; Investigation: JN, ZL, YY; Methodology: JN; Writing—original draft: JN; Data curation: JN, ZL, YY, WLi, YH, PL, XH, XZ, XT, ML, SZ; Writing—review & editing: XH, JD, JW; Supervision: JT, HJ, LS, BT, JW; Conceptualization: JW; Funding acquisition: JW.

Corresponding author

Correspondence to Junling Wang.

Ethics declarations

Conflicts of interest

The authors report no actual or potential conflicts of interest.

Ethics approval

The study was approved by the Ethics Committee of Xiangya Hospital, Central South University.

Consent to participate

Written informed consent was obtained from all subjects.

Consent for publication

Written informed consent for publication was obtained from all participants.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 147 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, J., Liu, Z., Yuan, Y. et al. Mitochondrial genome variations are associated with amyotrophic lateral sclerosis in patients from mainland China. J Neurol 269, 805–814 (2022). https://doi.org/10.1007/s00415-021-10659-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-021-10659-7

Keywords

Navigation