Skip to main content

Advertisement

Log in

Axonal degeneration in Guillain–Barré syndrome: a reappraisal

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The aim of this review was to analyse the pathophysiology of axonal degeneration in Guillain–Barré syndrome (GBS) with emphasis on early stages (≤ 10 days after onset). An overview of experimental autoimmune neuritis (EAN) models is provided. Originally GBS and acute inflammatory demyelinating polyneuropathy were equated, presence of axonal degeneration being attributed to a “bystander” effect. Afterwards, primary axonal GBS forms were reported, designated as acute motor axonal neuropathy/acute motor–sensory axonal neuropathy. Revision of the first pathological description of axonal GBS indicates the coexistence of active axonal degeneration and demyelination in spinal roots, and pure Wallerian-like degeneration in peripheral nerve trunks. Nerve conduction studies are essential for syndrome subtyping, though their sensitivity is scanty in early GBS. Serum markers of axonal degeneration include increased levels of neurofilament light chain and presence of anti-ganglioside reactivity. According to nerve ultrasonographic features and autopsy studies, ventral rami of spinal nerves are a hotspot in early GBS. In P2-induced EAN models, the initial pathogenic change is inflammatory oedema of spinal roots and sciatic nerve, which is followed by demyelination, and Wallerian-like degeneration in nerve trunks possessing epi-perineurium; a critical elevation of endoneurial fluid pressure is a pre-requisite for inducing ischemic axonal degeneration. Similar lesion topography may occur in GBS. The repairing role of adaxonal Schwann cytoplasm in axonal degeneration is analysed. A novel pathophysiological mechanism for nerve trunk pain in GBS, including pure motor forms, is provided. The potential therapeutic role of intravenous boluses of methylprednisolone for early severe GBS and intractable pain is argued.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. van Doorn PA, Ruts L, Jacobs BC (2008) Clinical features, pathogenesis, and treatment of Guillain–Barré syndrome. Lancet Neurol 7:939–950

    Article  PubMed  Google Scholar 

  2. Willison HJ, Jacobs BC, van Doorn PA (2016) Guillain–Barré syndrome. Lancet 388:717–727

    Article  PubMed  Google Scholar 

  3. Griffin JW, Li CY, Ho TW, Tian M, Gao CY, Xue P, Mishu B, Cornblath DR, Macko C, McKhann GM, Asbury AK (1996) Pathology of the motor-sensory axonal Guillain–Barré syndrome. Ann Neurol 39:17–28

    Article  CAS  PubMed  Google Scholar 

  4. Kuwabara S, Yuki N (2013) Axonal Guillain–Barré syndrome: concepts and controversies. Lancet Neurol 12:1180–1188

    Article  PubMed  Google Scholar 

  5. van den Berg B, Walgaard C, Drenthen J, Fokke C, Jacobs BC, van Doorn PA (2014) Guillain–Barré syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol 10:469–482

    Article  PubMed  CAS  Google Scholar 

  6. Goodfellow JA, Willison HJ (2016) Guillain–Barré syndrome: a century of progress. Nat Rev Neurol 12:723–731

    Article  PubMed  Google Scholar 

  7. Doets AY, Verboon C, van den Berg B, Harbo T, Cornblath DR, Willison HJ, Islam Z, Attarian S, Barroso FA, Bateman K, Benedetti L, van den Bergh P, Casasnovas C, Cavaletti G, Chavada G, Claeys KG, Dardiotis E, Davidson A, van Doorn PA, Feasby TE, Galassi G, Gorson KC, Hartung HP, Hsieh ST, Hughes RAC, Illa I, Islam B, Kusunoki S, Kuwabara S, Lehmann HC, Miller JAL, Mohammad QD, Monges S, Nobile Orazio E, Pardo J, Pereon Y, Rinaldi S, Querol L, Reddel SW, Reisin RC, Shahrizaila N, Sindrup SH, Waqar W, Jacobs BC, IGOS Consortium (2018) Regional variation of Guillain-Barré syndrome. Brain 141:2866–2877

    Article  PubMed  Google Scholar 

  8. Sobue G, Li M, Terao S, Aoki S, Ichimura M, Ieda T, Doyu M, Yasuda T, Hashizume Y, Mitsuma T (1997) Axonal pathology in Japanese Guillain–Barré syndrome: a study of 15 autopsied cases. Neurology 48:1694–1700

    Article  CAS  PubMed  Google Scholar 

  9. Benedetti L, Briani C, Beronio A, Massa F, Giorli E, Sani C, Delia P, Artioli S, Sormani MP, Mannironi A, Tartaglione A, Mancardi GL (2019) Increased incidence of axonal Guillain–Barré syndrome in La Spezia area of Italy. A 13-year follow-up study. J Peripher Nerv Syst 24:80–86

    Article  PubMed  Google Scholar 

  10. Sedano MJ, Orizaola P, Gallardo E, García A, Pelayo-Negro AL, Sánchez-Juan P, Infante J, Berciano J (2019) A unicenter, prospective study of Guillain–Barré syndrome in Spain. Acta Neurol Scand 139:546–554

    Article  CAS  PubMed  Google Scholar 

  11. Berciano J, Sedano MJ, Pelayo-Negro AL, García A, Orizaola P, Gallardo E, Lafarga M, Berciano MT, Jacobs BC (2017) Proximal nerve lesions in early Guillain–Barré syndrome: implications for pathogenesis and disease classification. J Neurol 264:221–236

    Article  PubMed  Google Scholar 

  12. Uncini A, Ippoliti L, Shahrizaila N, Sekiguchi Y, Kuwabara S (2017) Optimizing the electrodiagnostic accuracy in Guillain–Barré syndrome subtypes: criteria sets and sparse linear discriminant analysis. Clin Neurophysiol 128:1176–1183

    Article  PubMed  Google Scholar 

  13. Midroni G, Bilbao JM (1985) Biopsy diagnosis of peripheral neuropathy. Butterworth-Heinemann, Newton

    Google Scholar 

  14. King R (1999) Atlas of nerve pathology. Arnold, London

    Google Scholar 

  15. Altmann P, De Simoni D, Kaider A, Ludwig B, Rath J, Leutmezer F, Zimprich F, Hoeftberger R, Lunn MP, Heslegrave A, Berger T, Zetterberg H, Rommer PS (2020) Increased serum neurofilament light chain concentration indicates poor outcome in Guillain–Barré syndrome. J Neuroinflammation 17:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Soliven B (2014) Animal models of autoimmune neuropathy. ILAR J 54:282–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Albers JW, Donofrio PD, McGonagle TK (1985) Sequential electrodiagnostic abnormalities in acute inflammatory demyelinating polyradiculoneuropathy. Muscle Nerve 8:528–539

    Article  CAS  PubMed  Google Scholar 

  18. Madrid RE, Wiśniewski HM (1978) Peripheral nervous system pathology in relapsing experimental allergic encephalomyelitis. J Neurocytol 7:265–281

    Article  CAS  PubMed  Google Scholar 

  19. King RHM, Thomas PK, Pollard JD (1977) Axonal and dorsal root ganglion cell changes in experimental allergic neuritis. Neuropathol Appl Neurobiol 3:471–486

    Article  Google Scholar 

  20. Said G, Saida K, Saida T, Asbury AK (1981) Axonal lesions in acute experimental demyelination: a sequential teased nerve fiber study. Neurology 31:413–421

    Article  CAS  PubMed  Google Scholar 

  21. Asbury AK, Cornblath DR (1990) Assessment of current diagnostic criteria for Guillain–Barré syndrome. Ann Neurol 27(Suppl):S21–S24

    Article  PubMed  Google Scholar 

  22. Ho TW, Mishu B, Li CY, Gao CY, Cornblath DR, Griffin JW, Asbury AK, Blaser MJ, McKhann GM (1995) Guillain–Barré syndrome in northern China. Relationship to Campylobacter jejuni infection and anti-glycolipid antibodies. Brain 118:597–605

    Article  PubMed  Google Scholar 

  23. Hadden RD, Cornblath DR, Hughes RA, Zielasek J, Hartung HP, Toyka KV, Swan AV (1998) Electrophysiological classification of Guillain–Barré syndrome: clinical associations and outcome. Plasma Exchange/Sandoglobulin Guillain–Barré Syndrome Trial Group. Ann Neurol 44:780–788

    Article  CAS  PubMed  Google Scholar 

  24. Albertí MA, Alentorn A, Martínez-Yelamos S, Martínez-Matos JA, Povedano M, Montero J, Casasnovas C (2011) Very early electrodiagnostic findings in Guillain–Barré syndrome. J Peripher Nerv Syst 16:136–142

    Article  PubMed  Google Scholar 

  25. Berciano J, Orizaola P, Gallardo E, Pelayo-Negro AL, Sánchez-Juan P, Infante J, Sedano MJ (2020) Very early Guillain–Barré syndrome: a clinical-electrophysiological and ultrasonographic study. Clin Neurophysiol Pract 5:1–9

    Article  PubMed  Google Scholar 

  26. Ye Y, Zhu D, Liu L, Wang K, Huang K, Hou C (2014) Electrophysiological measurement at Erb's point during the early stage of Guillain–Barré syndrome. J Clin Neurosci 21:786–789

    Article  PubMed  Google Scholar 

  27. Temuçin CM, Nurlu G (2011) Measurement of motor root conduction time at the early stage of Guillain–Barre syndrome. Eur J Neurol 10:1240–1245

    Article  Google Scholar 

  28. Kurt Incesu T, Secil Y, Tokucoglu F, Gurgor N, Özdemirkiran T, Akhan G, Ertekin C (2013) Diagnostic value of lumbar root stimulation at the early stage of Guillain–Barré syndrome. Clin Neurophysiol 124:197–203

    Article  PubMed  Google Scholar 

  29. Sevy A, Grapperon AM, Salort Campana E, Delmont E, Attarian S (2018) Detection of proximal conduction blocks using a triple stimulation technique improves the early diagnosis of Guillain–Barré syndrome. Clin Neurophysiol 129:127–132

    Article  PubMed  Google Scholar 

  30. Gorson KC, Ropper AH, Muriello MA, Blair R (1996) Prospective evaluation of MRI lumbosacral nerve root enhancement in acute Guillain–Barré syndrome. Neurology 47:813–817

    Article  CAS  PubMed  Google Scholar 

  31. Byun WM, Park WK, Park BH, Ahn SH, Hwang MS, Chang JC (1998) Guillain–Barré syndrome: MR imaging findings of the spine in eight patients. Radiology 208:137–141

    Article  CAS  PubMed  Google Scholar 

  32. Yikilmaz A, Doganay S, Gumus H, Per H, Kumandas S, Coskun A (2010) Magnetic resonance imaging of childhood Guillain–Barre syndrome. Childs Nerv Syst 26:1103–1108

    Article  PubMed  Google Scholar 

  33. Gallardo E, Sedano MJ, Orizaola P, Sánchez-Juan P, González-Suárez A, García A, Terán-Villagrá N, Ruiz-Soto M, Álvaro RL, Berciano MT, Lafarga M, Berciano J (2015) Spinal nerve involvement in early Guillain–Barré syndrome: a clinico-electrophysiological, ultrasonographic and pathological study. Clin Neurophysiol 126:810–819

    Article  PubMed  Google Scholar 

  34. Berciano J, Coria F, Montón F, Calleja J, Figols J, LaFarga M (1993) Axonal form of Guillain–Barré syndrome: evidence for macrophage-associated demyelination. Muscle Nerve 16:744–751

    Article  CAS  PubMed  Google Scholar 

  35. McKhann GM, Cornblath DR, Griffin JW, Ho TW, Li CY, Jiang Z, Wu HS, Zhaori G, Liu Y, Jou LP et al (1993) Acute motor axonal neuropathy: a frequent cause of acute flaccid paralysis in China. Ann Neurol 33:333–342

    Article  CAS  PubMed  Google Scholar 

  36. Griffin JW, Li CY, Ho TW, Xue P, Macko C, Gao CY, Yang C, Tian M, Mishu B, Cornblath DR (1995) Guillain–Barré syndrome in northern China. The spectrum of neuropathological changes in clinically defined cases. Brain 118:577–595

    Article  PubMed  Google Scholar 

  37. Gallardo E, Noto Y, Simon NG (2015) Ultrasound in the diagnosis of peripheral neuropathy: structure meets function in the neuromuscular clinic. J Neurol Neurosurg Psychiatry 86:1066–1074

    Article  PubMed  Google Scholar 

  38. Grimm A, Décard BF, Schramm A, Pröbstel AK, Rasenack M, Axer H, Fuhr P (2016) Ultrasound and electrophysiologic findings in patients with Guillain–Barré syndrome at disease onset and over a period of six months. Clin Neurophysiol 127:1657–1663

    Article  PubMed  Google Scholar 

  39. Guillain G, Barré JA, Strohl A (1916) Sur un syndrome de radiculo-névrite avec hyperalbuminose du liquide céphalo-rachidien sans réaction cellulaire. Remarques sur les caractères cliniques et graphiques des réflexes tendineux. Bull Soc Méd Hôp Paris 40:1462–1470

    Google Scholar 

  40. Krücke W (1955) Die primär-entzündliche Polyneuritis unbekannter Ursache. In: Lubarsch O, et al. (eds) Handbuch der speziallen pathologischen Anatomie und Histologie, Vol XIII/5, Erkrankungen des peripheren und des vegetativen Nerven. Springer-Verlag, Berlin, pp 164–182

    Google Scholar 

  41. Asbury AK, Arnason BG, Adams RD (1969) The inflammatory lesion in idiopathic polyneuritis. Its role in pathogenesis. Medicine (Baltimore) 48:173–215

    Article  CAS  Google Scholar 

  42. Wiśniewski H, Terry RD, Whitaker JN, Cook SD, Dowling PC (1969) Landry–Guillain–Barré syndrome. A primary demyelinating disease. Arch Neurol 21:269–276

    Article  PubMed  Google Scholar 

  43. Carpenter S (1972) An ultrastructural study of an acute fatal case of the Guillain–Barré syndrome. J Neurol Sci 15:125–140

    Article  CAS  PubMed  Google Scholar 

  44. Prineas JW (1972) Acute idiopathic polyneuritis. An electron microscope study. Lab Invest 26:133–147

    CAS  PubMed  Google Scholar 

  45. Haymaker WE, Kernohan JW (1949) The Landry–Guillain–Barré syndrome; a clinicopathologic report of 50 fatal cases and a critique of the literature. Medicine (Baltimore) 28:59–141

    Article  CAS  Google Scholar 

  46. Brechenmacher C, Vital C, Deminiere C, Laurentjoye L, Castaing Y, Gbikpi-Benissan G, Cardinaud JP, Favarel-Garrigues JP (1987) Guillain–Barré syndrome: an ultrastructural study of peripheral nerve in 65 patients. Clin Neuropathol 6:19–24

    CAS  PubMed  Google Scholar 

  47. Feasby TE, Gilbert JJ, Brown WF, Bolton CF, Hahn AF, Koopman WF, Zochodne DW (1986) An acute axonal form of Guillain–Barré polyneuropathy. Brain 109:1115–1126

    Article  PubMed  Google Scholar 

  48. Thomas PK (1992) The Guillain–Barré syndrome: no longer a simple concept. J Neurol 239:361–362

    CAS  PubMed  Google Scholar 

  49. Triggs WJ, Cros D, Gominak SC, Zuniga G, Beric A, Shahani BT, Ropper AH, Roongta SM (1992) Motor nerve inexcitability in Guillain–Barré syndrome. The spectrum of distal conduction block and axonal degeneration. Brain 115:1291–1302

    Article  PubMed  Google Scholar 

  50. Cros D, Triggs WJ (1994) There are no neurophysiologic features characteristic of "axonal" Guillain–Barré syndrome. Muscle Nerve 17:675–677

    Article  CAS  PubMed  Google Scholar 

  51. Yuki N (1994) Pathogenesis of axonal Guillain–Barré syndrome: hypothesis. Muscle Nerve 17:680–682

    Article  CAS  PubMed  Google Scholar 

  52. Feasby TE, Hahn AF, Brown WF, Bolton CF, Gilbert JJ, Koopman WJ (1993) Severe axonal degeneration in acute Guillain–Barré syndrome: evidence of two different mechanisms? J Neurol Sci 116:185–192

    Article  CAS  PubMed  Google Scholar 

  53. Feasby TE (1994) Axonal Guillain–Barré syndrome. Muscle Nerve 17:678–679

    Article  CAS  PubMed  Google Scholar 

  54. Feasby TE (2016) Axonal Guillain–Barré syndrome. In: Willison HJ, Goodfellow JA (eds) GBS100 Celebrating a centenary of progress in Guillain–Barré syndrome. PNS, La Jolla, pp 120–124

    Google Scholar 

  55. Yuki N, Yoshino H, Sato S, Miyatake T (1990) Acute axonal polyneuropathy associated with anti-GM1 antibodies following Campylobacter enteritis. Neurology 40:1900–1902

    Article  CAS  PubMed  Google Scholar 

  56. Gregson NA, Jones D, Thomas PK, Willison HJ (1991) Acute motor neuropathy with antibodies to GM1 ganglioside. J Neurol 238:447–451

    Article  CAS  PubMed  Google Scholar 

  57. McKhann GM, Cornblath DR, Ho T, Li CY, Bai AY, Wu HS, Yei QF, Zhang WC, Zhaori Z, Jiang Z et al (1991) Clinical and electrophysiological aspects of acute paralytic disease of children and young adults in northern China. Lancet 338:593–597

    Article  CAS  PubMed  Google Scholar 

  58. Hall SM, Hughes RA, Atkinson PF, McColl I, Gale A (1992) Motor nerve biopsy in severe Guillain–Barré syndrome. Ann Neurol 31:441–444

    Article  CAS  PubMed  Google Scholar 

  59. Ho TW, Hsieh ST, Nachamkin I, Willison HJ, Sheikh K, Kiehlbauch J, Flanigan K, McArthur JC, Cornblath DR, McKhann GM, Griffin JW (1997) Motor nerve terminal degeneration provides a potential mechanism for rapid recovery in acute motor axonal neuropathy after Campylobacter infection. Neurology 48:717–724

    Article  CAS  PubMed  Google Scholar 

  60. McKhann G, Ho TW (2016) The Chinese paralytic syndrome. Recollection of participants. In: Willison HJ, Goodfellow JA (eds) GBS100 Celebrating a centenary of progress in Guillain–Barré syndrome. PNS, La Jolla, pp 78–88

    Google Scholar 

  61. Griffin JW, Li CY, Macko C, Ho TW, Hsieh ST, Xue P, Wang FA, Cornblath DR, McKhann GM, Asbury AK (1996) Early nodal changes in the acute motor axonal neuropathy pattern of the Guillain–Barré syndrome. J Neurocytol 25:33–51

    Article  CAS  PubMed  Google Scholar 

  62. Hafer-Macko C, Hsieh ST, Li CY, Ho TW, Sheikh K, Cornblath DR, McKhann GM, Asbury AK, Griffin JW (1996) Acute motor axonal neuropathy: an antibody-mediated attack on axolemma. Ann Neurol 40:635–644

    Article  CAS  PubMed  Google Scholar 

  63. Hafer-Macko CE, Sheikh KA, Li CY, Ho TW, Cornblath DR, McKhann GM, Asbury AK, Griffin JW (1996) Immune attack on the Schwann cell surface in acute inflammatory demyelinating polyneuropathy. Ann Neurol 39:625–635

    Article  CAS  PubMed  Google Scholar 

  64. Willison HJ (2012) The translation of the pathological findings described in humans to experimental models of acute motor axonal neuropathy. J Peripher Nerv Syst 17(Suppl 3):3–8

    Article  PubMed  Google Scholar 

  65. Uncini A, Susuki K, Yuki N (2013) Nodo-paranodopathy: beyond the demyelinating and axonal classification in anti-ganglioside antibody-mediated neuropathies. Clin Neurophysiol 124:1928–1934

    Article  PubMed  Google Scholar 

  66. Chaudhry V, Cornblath DR (1992) Wallerian degeneration in human nerves: serial electrophysiological studies. Muscle Nerve 15:687–693

    Article  CAS  PubMed  Google Scholar 

  67. Berciano J, Figols J, García A, Calle E, Illa I, Lafarga M, Berciano MT (1997) Fulminant Guillain–Barré syndrome with universal inexcitability of peripheral nerves: a clinicopathological study. Muscle Nerve 20:846–857

    Article  CAS  PubMed  Google Scholar 

  68. Kanda T, Hayashi H, Tanabe H, Tsubaki T, Oda M (1989) A fulminant case of Guillain–Barré syndrome: topographic and fibre size related analysis of demyelinating changes. J Neurol Neurosurg Psychiatry 52:857–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Berciano J, García A, Figols J, Muñoz R, Berciano MT, Lafarga M (2000) Perineurium contributes to axonal damage in acute inflammatory demyelinating polyneuropathy. Neurology 55:552–559

    Article  CAS  PubMed  Google Scholar 

  70. Berciano J, García A, Villagrá NT, González F, Ramón C, Illa I, Berciano MT, Lafarga M (2009) Severe Guillain–Barré syndrome: sorting out the pathological hallmark in an electrophysiological axonal case. J Peripher Nerv Syst 14:54–63

    Article  PubMed  Google Scholar 

  71. Goodfellow JA, Willison HJ (2018) Gangliosides and autoimmune peripheral nerve diseases. Prog Mol Biol Transl Sci 156:355–382

    Article  CAS  PubMed  Google Scholar 

  72. Waksman BH, Adams RD (1955) Allergic neuritis: an experimental disease of rabbits induced by the injection of peripheral nervous tissue and adjuvants. J Exp Med 102:213–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Izumo S, Linington C, Wekerle H, Meyermann R (1985) Morphologic study on experimental allergic neuritis mediated by T cell line specific for bovine P2 protein in Lewis rats. Lab Invest 53:209–218

    CAS  PubMed  Google Scholar 

  74. Heininger K, Stoll G, Linington C, Toyka KV, Wekerle H (1986) Conduction failure and nerve conduction slowing in experimental allergic neuritis induced by P2-specific T-cell lines. Ann Neurol 19:44–449

    Article  CAS  PubMed  Google Scholar 

  75. Hahn AF, Feasby TE, Wilkie L, Lovgren D (1991) P2-peptide induced experimental allergic neuritis: a model to study axonal degeneration. Acta Neuropathol 82:60–65

    Article  CAS  PubMed  Google Scholar 

  76. Hahn AF, Feasby TE, Steele A, Lovgren DS, Berry J (1988) Demyelination and axonal degeneration in Lewis rat experimental allergic neuritis depend on the myelin dosage. Lab Invest 59:115–125

    CAS  PubMed  Google Scholar 

  77. Powell HC, Braheny SL, Myers RR, Rodriguez M, Lampert PW (1983) Early changes in experimental allergic neuritis. Lab Invest 48:332–338

    CAS  PubMed  Google Scholar 

  78. Powell HC, Myers RR, Mizisin AP, Olee T, Brostoff SW (1991) Response of the axon and barrier endothelium to experimental allergic neuritis induced by autoreactive T cell lines. Acta Neuropathol 82:364–377

    Article  CAS  PubMed  Google Scholar 

  79. McManis PG, Low PA, Lagerlund TD (1993) Nerve blood flow and microenviroment. In: Dyck PJ, et al. (eds) Peripheral neuropathy. WB Saunders, Philadelphia, pp 453–4731

    Google Scholar 

  80. Hadden RD, Gregson NA, Gold R, Smith KJ, Hughes RA (2002) Accumulation of immunoglobulin across the 'blood-nerve barrier' in spinal roots in adoptive transfer experimental autoimmune neuritis. Neuropathol Appl Neurobiol 28:489–497

    Article  CAS  PubMed  Google Scholar 

  81. Kusunoki S (2016) Animal models: antiganglioside antibodies as causative factor of GBS. In: Willison HJ, Goodfellow JA (eds) GBS100 Celebrating a centenary of progress in Guillain–Barré syndrome. PNS, La Jolla, pp 365–371

    Google Scholar 

  82. Yuki N, Yamada M, Koga M, Odaka M, Susuki K, Tagawa Y, Ueda S, Kasama T, Ohnishi A, Hayashi S, Takahashi H, Kamijo M, Hirata K (2001) Animal model of axonal Guillain–Barré syndrome induced by sensitization with GM1 ganglioside. Ann Neurol 49:712–720

    Article  CAS  PubMed  Google Scholar 

  83. Nachamkin I (2002) (2002) Rabbit model of Guillain–Barré syndrome. Ann Neurol 52:127–128

    Article  PubMed  Google Scholar 

  84. Moyano AL, Comín R, Lardone RD, Alaniz ME, Theaux R, Irazoqui FJ, Nores GA (2008) Validation of a rabbit model of neuropathy induced by immunization with gangliosides. J Neurol Sci 272:110–114

    Article  CAS  PubMed  Google Scholar 

  85. Susuki K, Nishimoto Y, Yamada M, Baba M, Ueda S, Hirata K, Yuki N (2003) Acute motor axonal neuropathy rabbit model: immune attack on nerve root axons. Ann Neurol 54:383–388

    Article  PubMed  Google Scholar 

  86. Susuki K, Rasband MN, Tohyama K, Koibuchi K, Okamoto S, Funakoshi K, Hirata K, Baba H, Yuki N (2007) Anti-GM1 antibodies cause complement-mediated disruption of sodium channel clusters in peripheral motor nerve fibers. J Neurosci 27:3956–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yuki N, Susuki K, Koga M, Nishimoto Y, Odaka M, Hirata K, Taguchi K, Miyatake T, Furukawa K, Kobata T, Yamada M (2004) Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain–Barre syndrome. Proc Natl Acad Sci USA 101:11404–11409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li CY, Xue P, Tian WQ, Liu RC, Yang C (1996) Experimental Campylobacter jejuni infection in the chicken: an animal model of axonal Guillain–Barré syndrome. J Neurol Neurosurg Psychiatry 61:279–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. O'Hanlon GM, Humphreys PD, Goldman RS, Halstead SK, Bullens RW, Plomp JJ, Ushkaryov Y, Willison HJ (2003) Calpain inhibitors protect against axonal degeneration in a model of anti-ganglioside antibody-mediated motor nerve terminal injury. Brain 126:2497–2509

    Article  PubMed  Google Scholar 

  90. Plomp JJ, Willison HJ (2009) Pathophysiological actions of neuropathy-related anti-ganglioside antibodies at the neuromuscular junction. J Physiol 587:3979–3999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Spaans F, Vredeveld JW, Morré HH, Jacobs BC, De Baets MH (2003) Dysfunction at the motor end-plate and axon membrane in Guillain–Barré syndrome: a single-fiber EMG study. Muscle Nerve 27:426–434

    Article  PubMed  Google Scholar 

  92. Kuwabara S, Kokubun N, Misawa S, Kanai K, Isose S, Shibuya K, Noto Y, Mori M, Sekiguchi Y, Nasu S, Fujimaki Y, Hirata K, Yuki N (2011) Neuromuscular transmission is not impaired in axonal Guillain–Barré syndrome. J Neurol Neurosurg Psychiatry 82:1174–1147

    Article  PubMed  Google Scholar 

  93. Brown WF, Feasby TE, Hahn AF (1993) Electrophysiological changes in the acute "axonal" form of Guillain–Barre syndrome. Muscle Nerve 16:200–205

    Article  CAS  PubMed  Google Scholar 

  94. Cunningham ME, Meehan GR, Robinson S, Yao D, McGonigal R, Willison HJ (2020) Perisynaptic Schwann cells phagocytose nerve terminal debris in a mouse model of Guillain–Barré syndrome. J Peripher Nerv Syst. https://doi.org/10.1111/jns.12373(Online ahead of print)

    Article  PubMed  PubMed Central  Google Scholar 

  95. Korthals JK, Korthals MA, Wisniewski HM (1978) Peripheral nerve ischemia: Part 2. Accumulation of organelles. Ann Neurol 4:487–498

    Article  CAS  PubMed  Google Scholar 

  96. Nukada H, Dyck PJ (1987) Acute ischemia causes axonal stasis, swelling, attenuation, and secondary demyelination. Ann Neurol 22:311–318

    Article  CAS  PubMed  Google Scholar 

  97. Spencer PS, Thomas PK (1974) Ultrastructural studies of the dying-back process. II. The sequestration and removal by Schwann cells and oligodendrocytes of organelles from normal and diseases axons. J Neurocytol 3:763–783

    Article  CAS  PubMed  Google Scholar 

  98. Olsson Y (1968) Topographical differences in the vascular permeability of the peripheral nervous system. Acta Neuropathol 10:26–33

    Article  CAS  PubMed  Google Scholar 

  99. Kanda T (2007) Biology of the blood-nerve barrier and its alteration in immune mediate neuropathies. J Neuro Neurosurg Psychistry 84:208–212

    Article  Google Scholar 

  100. Olsson Y (1975) Vascular permeability in the peripheral nervous system. In: Dyck PJ, Thomas PK, Lambert ED (eds) Peripheral neuropathy (volume 1). WB Saunders, Philadelphia, pp 190–200

    Google Scholar 

  101. Berthold CH, Fraher JP, King RHM, Rydmark M (2005) Microscopical anatomy of the peripheral nervous system. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy. WB Saunders, Philadelphia, pp 35–91

    Chapter  Google Scholar 

  102. Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, Zetterberg H (2019) Neurofilament light chain as a biomarker in neurological disorders. J Neurol J Neurosurg Psychiatry 90:870–881

    Article  Google Scholar 

  103. Halstead SK, Humphreys PD, Goodfellow JA, Wagner ER, Smith RA, Willison HJ (2005) Complement inhibition abrogates nerve terminal injury in Miller Fisher syndrome. Ann Neurol 58:203–210

    Article  CAS  PubMed  Google Scholar 

  104. McGonigal R, Rowan EG, Greenshields KN, Halstead SK, Humphreys PD, Rother RP, Furukawa K, Willison HJ (2010) Anti-GD1a antibodies activate complement and calpain to injure distal motor nodes of Ranvier in mice. Brain 133:1944–1960

    Article  PubMed  Google Scholar 

  105. Hillmen P, Young NS, Schubert J, Brodsky RA, Socié G, Muus P, Röth A, Szer J, Elebute MO, Nakamura R, Browne P, Risitano AM, Hill A, Schrezenmeier H, Fu CL, Maciejewski J, Rollins SA, Mojcik CF, Rother RP, Luzzatto L (2006) The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med 355:1233–1243

    Article  CAS  PubMed  Google Scholar 

  106. Davidson AI, Halstead SK, Goodfellow JA, Chavada G, Mallik A, Overell J, Lunn MP, McConnachie A, van Doorn P, Willison HJ (2017) Inhibition of complement in Guillain–Barré syndrome: the ICA-GBS study. J Peripher Nerv Syst 22:4–12

    Article  CAS  PubMed  Google Scholar 

  107. Doets AY, Hughes RA, Brassington R, Hadden RD, Pritchard J (2020) Pharmacological treatment other than corticosteroids, intravenous immunoglobulin and plasma exchange for Guillain–Barré syndrome. Cochrane Database Syst Rev 1(1):008630

    Google Scholar 

  108. Powell HC, Myers RR (1996) The axon in Guillain–Barré syndrome: immune target or innocent bystander? Ann Neurol 39:4–5

    Article  CAS  PubMed  Google Scholar 

  109. Asbury AK, Fields HL (1984) Pain due to peripheral nerve damage: an hypothesis. Neurology 34:1587–1590

    Article  CAS  PubMed  Google Scholar 

  110. Moulin DE, Hagen N, Feasby TE, Amireh R, Hahn A (1997) Pain in Guillain–Barré syndrome. Neurology 48:328–331

    Article  CAS  PubMed  Google Scholar 

  111. Ruts L, Rico R, van Koningsveld R, Botero JD, Meulstee J, Gerstenbluth I, Merkies IS, van Doorn PA (2008) Pain accompanies pure motor Guillain–Barré syndrome. J Peripher Nerv Syst 13:305–306

    Article  PubMed  Google Scholar 

  112. Berciano J (2018) Neuropathic pain in early Guillain–Barré syndrome. Pain Physician 21:E279–E280

    Article  PubMed  Google Scholar 

  113. Ruts L, van Koningsveld R, Jacobs BC, van Doorn PA (2007) Determination of pain and response to methylprednisolone in Guillain–Barré syndrome. J Neurol 254:1318–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank my colleagues of the Service of Neurology, Drs Antonio García y Pedro Orizaola (Service of Clinical Neurophysiology), Dr. Elena Gallardo (Service of Radiology), Dr. Nuria Terán-Villagrá (Service of Pathology), and Professors Miguel Lafarga and María T. Berciano (Department of Anatomy and Cell Biology, UC) for their help in clinical, electrophysiological, imaging and pathological studies. I wish also to thank Dr José Gazulla (Service of Neurology, University Hospital Miguel Servet, Saragosse) for his comments on the manuscript, and Mr Mario Corral (Director of “Marquesa de Pelayo” Library) for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Berciano.

Ethics declarations

Conflicts of interest

The author declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berciano, J. Axonal degeneration in Guillain–Barré syndrome: a reappraisal. J Neurol 268, 3728–3743 (2021). https://doi.org/10.1007/s00415-020-10034-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-020-10034-y

Keywords

Navigation