Skip to main content

Advertisement

Log in

Economic evaluation of deep-brain stimulation for Tourette’s syndrome: an initial exploration

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Deep-brain stimulation (DBS) can be effective in controlling medically intractable symptoms of Tourette’s syndrome (TS). There is no evidence to date, though, of the potential cost-effectiveness of DBS for this indication.

Objective

To provide the first estimates of the likely cost-effectiveness of DBS in the treatment of severe TS.

Methods

We conducted a cost-utility analysis using clinical data from 17 Australian patients receiving DBS. Direct medical costs for DBS using non-rechargeable and rechargeable batteries and for the alternative best medical treatment (BMT), and health utilities for BMT were sourced from the literature. Incremental cost-effectiveness ratios (ICERs) were estimated using a Markov models with a 10-year time horizon and 5% discount rate.

Results

DBS increased quality-adjusted life year (QALY) gained from 2.76 to 4.60 over a 10-year time horizon. The ICER for DBS with non-rechargeable (rechargeable) batteries, compared to BMT, was A$33,838 (A$15,859) per QALY. The ICER estimates are sensitive to DBS costs and selected time horizon.

Conclusions

Our study indicates that DBS may be a cost-effective treatment for severe TS, based on the very limited clinical data available and under particular assumptions. While the limited availability of data presents a challenge, we also conduct sensitivity analyses to test the robustness of the results to the assumptions used in the analysis. We nevertheless recommend the implementation of randomised controlled trials that collect a comprehensive range of costs and the use of a widely accepted health-related quality of life instrument to enable more definitive statements about the cost-effectiveness of DBS for TS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dodel I, Reese JP, Müller N, Münchau A, Balzer-Geldsetzer M, Wasem J, Oertel WH, Dodel R, Müller-Vahl K (2010) Cost of illness in patients with Gilles de la Tourette’s syndrome. J Neurol 257(7):1055–1061. https://doi.org/10.1007/s00415-010-5458-y

    Article  PubMed  Google Scholar 

  2. Sachdev PS, Mohan A, Cannon E, Crawford JD, Silberstein P, Cook R, Coyne T, Silburn PA (2014) Deep brain stimulation of the antero-medial globus pallidus interna for Tourette syndrome. PLoS ONE 9(8):e104926

    Article  Google Scholar 

  3. Muller-Vahl K, Dodel I, Muller N, Munchau A, Reese JP, Balzer-Geldsetzer M, Dodel R, Oertel WH (2010) Health-related quality of life in patients with Gilles de la Tourette's syndrome. Mov Disord 25(3):309–314. https://doi.org/10.1002/mds.22900

    Article  PubMed  Google Scholar 

  4. Baldermann JC, Schüller T, Huys D, Becker I, Timmermann L, Jessen F, Visser-Vandewalle V, Kuhn J (2016) Deep brain stimulation for Tourette's syndrome: a systematic review and meta-analysis. Brain Stimul 9(2):296–304. https://doi.org/10.1016/j.brs.2015.11.005

    Article  PubMed  Google Scholar 

  5. Dang TTH, Rowell D, Connelly LB (2019) Cost-effectiveness of deep brain stimulation with movement disorders: a systematic review. Move Disorders Clin Pract 6(5):348–358. https://doi.org/10.1002/mdc3.12780

    Article  Google Scholar 

  6. Kurlan RM (2014) Treatment of Tourette syndrome. Neurotherapeutics 11(1):161–165. https://doi.org/10.1007/s13311-013-0215-4

    Article  CAS  PubMed  Google Scholar 

  7. Medical Services Advisory Committee (2008) Deep brain stimulation for essential tremor and dystonia (trans: Aging DoHa). Australia

  8. Pringsheim T, Freeman R, Lang A (2007) Tourette syndrome and dystonia. J Neurol Neurosurg Psychiatry 78(5):544–544. https://doi.org/10.1136/jnnp.2006.0102442

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rizzi M, Messina G, Penner F, D’Ammando A, Muratorio F, Franzini A (2015) Internal pulse generators in deep brain stimulation: Rechargeable or not? World Neurosurg 84(4):1020–1029. https://doi.org/10.1016/j.wneu.2015.05.028

    Article  PubMed  Google Scholar 

  10. Ooms P, Blankers M, Figee M, Bergfeld IO, van den Munckhof P, Schuurman PR, Denys D (2017) Cost-effectiveness of deep brain stimulation versus treatment as usual for obsessive-compulsive disorder. Brain Stimul. https://doi.org/10.1016/j.brs.2017.04.120

    Article  PubMed  Google Scholar 

  11. Shemilt I, Thomas J, Morciano M (2010) A web-based tool for adjusting costs to a specific target currency and price year. Evidence Policy 6(1):51–59. https://doi.org/10.1332/174426410X482999

    Article  Google Scholar 

  12. Cavanna AE, David K, Orth M, Robertson MM (2012) Predictors during childhood of future health-related quality of life in adults with Gilles de la Tourette syndrome. Eur J Paediatr Neurol 16(6):605–612. https://doi.org/10.1016/j.ejpn.2012.02.004

    Article  PubMed  Google Scholar 

  13. Cavanna AE, David K, Bandera V, Termine C, Balottin U, Schrag A, Selai C (2013) Health-related quality of life in Gilles de la Tourette syndrome: a decade of research. Behav Neurol 27(1):83–93. https://doi.org/10.3233/ben-120296

    Article  PubMed  PubMed Central  Google Scholar 

  14. Silvestri PR, Chiarotti F, Baglioni V, Neri V, Cardona F, Cavanna AE (2016) Health-related quality of life in patients with Gilles de la Tourette syndrome at the transition between adolescence and adulthood. Neurol Sci 37(11):1857–1860. https://doi.org/10.1007/s10072-016-2682-y

    Article  PubMed  PubMed Central  Google Scholar 

  15. Eapen V, Snedden C, Crncec R, Pick A, Sachdev P (2016) Tourette syndrome, co-morbidities and quality of life. Aust N Z J Psychiatry 50(1):82–93. https://doi.org/10.1177/0004867415594429

    Article  PubMed  Google Scholar 

  16. O'Hare D, Helmes E, Reece J, Eapen V, McBain K (2016) The differential impact of Tourette's syndrome and comorbid diagnosis on the quality of life and functioning of diagnosed children and adolescents. J Child Adolesc Psychiatr Nurs 29(1):30–36. https://doi.org/10.1111/jcap.12132

    Article  PubMed  Google Scholar 

  17. Leckman JF, Riddle MA, Hardin MT, Ort SI, Swartz KL, Stevenson J, Cohen DJ (1989) The Yale Global Tic Severity Scale: Initial testing of a clinician-rated scale of tic severity. J Am Acad Child Adolesc Psychiatry 28(4):566–573. https://doi.org/10.1097/00004583-198907000-00015

    Article  CAS  PubMed  Google Scholar 

  18. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23(1):56–62

    Article  CAS  Google Scholar 

  19. Padhi A, Fineberg NA (2010) Yale–Brown Obsessive–Compulsive Scale. In: Stolerman IP (ed) Encyclopedia of Psychopharmacology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1377–1377. doi:10.1007/978–3–540–68706–1_1421

  20. Startup M, Jackson MC, Bendix S (2002) The concurrent validity of the global assessment of functioning (GAF). Br J Clin Psychol 41(4):417–422. https://doi.org/10.1348/014466502760387533

    Article  PubMed  Google Scholar 

  21. Sachdev PS, Mohan A, Cannon E, Crawford JD, Silberstein P, Cook R, Coyne T, Silburn PA (2014) Deep brain stimulation of the antero-medial globus pallidus interna for Tourette's syndrome—supplemental file S1 Clinical effectiveness data. PLoS ONE 9(8):e104926. https://doi.org/10.1371/journal.pone.0104926.s001

    Article  PubMed  PubMed Central  Google Scholar 

  22. Davies B, Burrows G, Poynton C (1975) A comparative study of four depression rating scales. Aust N Z J Psychiatry 9(1):21–24. https://doi.org/10.3109/00048677509159816

    Article  CAS  PubMed  Google Scholar 

  23. Kircanski K, Woods DW, Chang SW, Ricketts EJ, Piacentini JC (2010) Cluster analysis of the Yale Global Tic Severity Scale (YGTSS): Symptom dimensions and clinical correlates in an outpatient youth sample. J Abnorm Child Psychol 38(6):777–788. https://doi.org/10.1007/s10802-010-9410-5

    Article  PubMed  PubMed Central  Google Scholar 

  24. Servello D, Porta M, Sassi M, Brambilla A, Robertson MM (2008) Deep brain stimulation in 18 patients with severe Gilles de la Tourette syndrome refractory to treatment: the surgery and stimulation. J Neurol Neurosurg Psychiatry 79(2):136–142. https://doi.org/10.1136/jnnp.2006.104067

    Article  CAS  PubMed  Google Scholar 

  25. Drummond M, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW (2015) Methods for the economic evaluation of health care programmes. Oxford University Press, Oxford, Fourth edition edn

    Google Scholar 

  26. Fernández de la Cruz L, Rydell M, Runeson B, Brander G, Rück C, D’Onofrio BM, Larsson H, Lichtenstein P, Mataix-Cols D (2017) Suicide in Tourette’s and chronic tic disorders. Biol Psychiatry 82(2):111–118. https://doi.org/10.1016/j.biopsych.2016.08.023

    Article  PubMed  Google Scholar 

  27. Medical Services Advisory Committee (2006) Deep brain stimulation for the symptoms of Parkinson's disease (trans: Aging DoHa). Australia

  28. Pharmaceutical Benefits Advisory Committee (2016) Guidelines for preparing submissions to the Pharmaceutical Benefits Advisory Committee (PBAC) Australia Government - Department of Health. https://pbac.pbs.gov.au/. Accessed 31 July 2017

  29. Dams J, Balzer-Geldsetzer M, Siebert U, Deuschl G, Schuepbach WM, Krack P, Timmermann L, Schnitzler A, Reese JP, Dodel R (2016) Cost-effectiveness of neurostimulation in Parkinson's disease with early motor complications. Mov Disord 31(8):1183–1191. https://doi.org/10.1002/mds.26740

    Article  PubMed  Google Scholar 

  30. Kawamoto Y, Mouri M, Taira T, Iseki H, Masamune K (2016) Cost-effectiveness analysis of deep brain stimulation in patients with Parkinsonʼs disease in Japan. World Neurosurg 89:628–635.e621. https://doi.org/10.1016/j.wneu.2015.11.062

    Article  PubMed  Google Scholar 

  31. Cannon E, Silburn P, Coyne T, O'Maley K, Crawford JD, Sachdev PS (2012) Deep brain stimulation of anteromedial globus pallidus interna for severe Tourette's syndrome. Am J Psychiatry 169(8):860–866. https://doi.org/10.1176/appi.ajp.2012.11101583

    Article  PubMed  Google Scholar 

  32. Dowd RS, Pourfar M, Mogilner AY (2017) Deep brain stimulation for Tourette syndrome: A single-center series. J Neurosurg. https://doi.org/10.3171/2016.10.jns161573

    Article  PubMed  Google Scholar 

  33. Motlagh MG, Smith ME, Landeros-Weisenberger A, Kobets AJ, King RA, Miravite J, de Lotbiniere AC, Alterman RL, Mogilner AY, Pourfar MH, Okun MS, Leckman JF (2013) Lessons learned from open-label deep brain stimulation for Tourette syndrome: Eight cases over 7 years. Tremor and other hyperkinetic movements (New York, NY). https://doi.org/10.7916/d8m32tgm

    Article  Google Scholar 

  34. Porta M, Servello D, Zanaboni C, Anasetti F, Menghetti C, Sassi M, Robertson MM (2012) Deep brain stimulation for treatment of refractory Tourette syndrome: long-term follow-up. Acta Neurochir (Wien) 154(11):2029. https://doi.org/10.1007/s00701-012-1497-8

    Article  CAS  Google Scholar 

  35. Welter ML, Mallet L, Houeto JL, Karachi C, Czernecki V, Cornu P, Navarro S, Pidoux B, Dormont D, Bardinet E, Yelnik J, Damier P, Agid Y (2008) Internal pallidal and thalamic stimulation in patients with Tourette syndrome. Arch Neurol 65(7):952–957. https://doi.org/10.1001/archneur.65.7.952

    Article  PubMed  Google Scholar 

  36. Ackermans L, Duits A, van der Linden C, Tijssen M, Schruers K, Temel Y, Kleijer M, Nederveen P, Bruggeman R, Tromp S, van Kranen-Mastenbroek V, Kingma H, Cath D, Visser-Vandewalle V (2011) Double-blind clinical trial of thalamic stimulation in patients with Tourette syndrome. Brain 134(3):832–844. https://doi.org/10.1093/brain/awq380

    Article  PubMed  Google Scholar 

  37. Briggs AH, Claxton K, Sculpher MJ (2006) Decision modelling for health economic evaluation, vol Book. Oxford University Press, Oxford, Whole

    Google Scholar 

  38. National Health Medical Research Council (2001) How to compare the costs and benefits: evaluation of the economic evidence. National Health and Medical Research Council, Canberra

    Google Scholar 

  39. Newall AT, Beutels P, Macartney K, Wood J, MacIntyre CR (2007) The cost-effectiveness of rotavirus vaccination in Australia. Vaccine 25(52):8851–8860. https://doi.org/10.1016/j.vaccine.2007.10.009

    Article  PubMed  Google Scholar 

  40. George B, Harris A, Mitchell A (2001) Cost-effectiveness analysis and the consistency of decision making: Evidence from pharmaceutical reimbursement in Australia (1991 to 1996). Pharmacoeconomics 19(11):1103–1109. https://doi.org/10.2165/00019053-200119110-00004

    Article  CAS  PubMed  Google Scholar 

  41. Clement FM, Harris A, Li JJ, Yong K, Lee KM, Manns BJ (2009) Using effectiveness and cost-effectiveness to make drug coverage decisions: A comparison of Britain, Australia, and Canada. JAMA 302(13):1437–1443. https://doi.org/10.1001/jama.2009.1409

    Article  CAS  PubMed  Google Scholar 

  42. Gafni A, Birch S (2006) Incremental cost-effectiveness ratios (ICERs): the silence of the lambda. Soc Sci Med 62(9):2091–2100. https://doi.org/10.1016/j.socscimed.2005.10.023

    Article  PubMed  Google Scholar 

  43. Gronseth G, Cox J, Gloss D, on behalf of the Guideline Development D, and Implementation Subcommittee of the American Academy of Neurology (2017) Clinical Practice Guideline Process Manual, 2017 ed. . Minneapolis

  44. Pietzsch JB, Garner AM, Marks WJ Jr (2016) Cost-effectiveness of deep brain stimulation for advanced Parkinson's disease in the United States. Neuromodulation 19(7):689–697. https://doi.org/10.1111/ner.12474

    Article  PubMed  Google Scholar 

  45. Fundament T, Eldridge PR, Green AL, Whone AL, Taylor RS, Williams AC, Schuepbach WMM (2016) Deep brain stimulation for Parkinson’s disease with early motor complications: a UK cost-effectiveness analysis. PLoS ONE 11(7):e0159340

    Article  Google Scholar 

  46. Moon W, Kim SN, Park S, Paek SH, Kwon JS (2017) The cost-effectiveness of deep brain stimulation for patients with treatment-resistant obsessive-compulsive disorder. Medicine 96(27):e7397. https://doi.org/10.1097/md.0000000000007397

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yianni J, Green AL, McIntosh E, Bittar RG, Joint C, Scott R, Gregory R, Bain PG, Aziz TZ (2005) The costs and benefits of deep brain stimulation surgery for patients with dystonia: an initial exploration. Neuromodulation 8(3):155–161. https://doi.org/10.1111/j.1525-1403.2005.05233.x

    Article  PubMed  Google Scholar 

  48. Dams J, Dodel R (2016) An economic evaluation of deep brain stimulation for patients with Parkinson's disease. Mov Disord 31(8):1122–1124. https://doi.org/10.1002/mds.26701

    Article  PubMed  Google Scholar 

  49. McIntosh E, Gray A, Daniels J, Gill S, Ives N, Jenkinson C, Mitchell R, Pall H, Patel S, Quinn N, Rick C, Wheatley K, Williams A, on behalf of The PDSCG, (2016) Cost-utility analysis of deep brain stimulation surgery plus best medical therapy versus best medical therapy in patients with Parkinson's: economic evaluation alongside the PD SURG trial. Mov Disord:n/a-n/a. https://doi.org/10.1002/mds.26423

    Article  Google Scholar 

  50. Coyle D, Cheung MC, Evans GA (2014) Opportunity cost of funding drugs for rare diseases. Med Decis Making 34(8):1016–1029. https://doi.org/10.1177/0272989X14539731

    Article  PubMed  Google Scholar 

  51. Kefalopoulou Z, Zrinzo L, Jahanshahi M, Candelario J, Milabo C, Beigi M, Akram H, Hyam J, Clayton J, Kass-Iliyya L, Silverdale M, Evans J, Limousin P, Hariz M, Joyce E, Foltynie T (2015) Bilateral globus pallidus stimulation for severe Tourette's syndrome: a double-blind, randomised crossover trial. The Lancet Neurology 14(6):595–605. https://doi.org/10.1016/S1474-4422(15)00008-3

    Article  PubMed  Google Scholar 

  52. Shiroiwa T, Fukuda T, Ikeda S, Shimozuma K (2013) QALY and productivity loss: empirical evidence for “double counting”. Value Health 16(4):581–587. https://doi.org/10.1016/j.jval.2013.02.009

    Article  PubMed  Google Scholar 

  53. Hagell P, Tornqvist AL, Hobart J (2008) Testing the SF-36 in Parkinson's disease. Implications for reporting rating scale data. J Neurol 255 (2):246–254. doi:10.1007/s00415–008–0708-y

Download references

Funding

At the time of conducting the research, TD received a Ph.D. scholarship from and DR, JL, TC, and PS were employed by the Asia–Pacific Centre for Neuromodulation (APCN). The APCN was in part funded by unrestricted research and education funding from Medtronic Inc. and St Andrew’s War Memorial Hospital. The funding bodies played no part in the design or conduct of the research or its reporting.

Author information

Authors and Affiliations

Authors

Contributions

1. Research project: A. Conception, B. Organization, C. Execution; 2. Statistical Analysis: A. Design, B. Execution, C. Review and Critique; 3. Manuscript: A. Writing of the first draft, B. Review and Critique. TD: 1A, 1B, 2A, 2B, 3A, DR: 1A, 2A, 2C, 3B, JL: 3B, TC: 3B, PS: 3B, LC: 2C, 3B.

Corresponding author

Correspondence to Tho T. H. Dang.

Ethics declarations

Conflicts of interest

LC reports no conflicts of interest.

Ethical standards

The manuscript does not contain clinical studies or patient data.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, T.T.H., Rowell, D., Liddle, J. et al. Economic evaluation of deep-brain stimulation for Tourette’s syndrome: an initial exploration. J Neurol 266, 2997–3008 (2019). https://doi.org/10.1007/s00415-019-09521-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-019-09521-8

Keywords

Navigation