Skip to main content

Advertisement

Log in

Spring cleaning: time to rethink imaging research lines in MS?

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Together with recently advanced MRI technological capability, new needs and updated questions are emerging in imaging research in multiple sclerosis (MS), especially with respect to the identification of novel in vivo biomarkers of MS-relevant pathological processes. Expected benefits will involve approaches to diagnosis and clinical classification. In detail, three main points of discussion are addressed in this review: (1) new imaging biomarkers (centrifugal/centripetal lesion enhancement, central vein, paramagnetic rims at the lesion edge, subpial cortical demyelination); (2) thinking about high-resolution MR from a pathological perspective (from postmortem to in vivo staging); and (3) the clinical utility of quantitative MRI. In this context, research efforts should increasingly be focused on the direct in vivo visualization of “hidden” inflammation, beyond what can be detected with conventional gadolinium-based methods, as well as remyelination and repair, since these are likely to represent critical pathological processes and potential therapeutic targets. Concluding remarks concern the limitations, challenges, and ultimately clinical role of non-conventional MRI techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kutzelnigg A, Lassmann H (2014) Pathology of multiple sclerosis and related inflammatory demyelinating diseases. Handb Clin Neurol 122:15–58

    Article  PubMed  Google Scholar 

  2. Polman CH et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69(2):292–302

    Article  PubMed  PubMed Central  Google Scholar 

  3. Filippi M et al (2014) Insights from magnetic resonance imaging. Handb Clin Neurol 122:115–149

    Article  PubMed  Google Scholar 

  4. Filippi M et al (2012) Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol 11(4):349–360

    Article  PubMed  Google Scholar 

  5. Lublin FD et al (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83(3):278–286

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ontaneda D, Fox RJ (2015) Progressive multiple sclerosis. Curr Opin Neurol 28(3):237–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Frank JA et al (1994) Serial contrast-enhanced magnetic resonance imaging in patients with early relapsing-remitting multiple sclerosis: implications for treatment trials. Ann Neurol 36(Suppl):S86–S90

    Article  PubMed  Google Scholar 

  8. Tauhid S et al (2014) MRI phenotypes based on cerebral lesions and atrophy in patients with multiple sclerosis. J Neurol Sci 346(1–2):250–254

    Article  PubMed  Google Scholar 

  9. Lucchinetti CF et al (1996) Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol 6(3):259–274

    Article  CAS  PubMed  Google Scholar 

  10. Lucchinetti C et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47(6):707–717

    Article  CAS  PubMed  Google Scholar 

  11. Konig FB et al (2008) Persistence of immunopathological and radiological traits in multiple sclerosis. Arch Neurol 65(11):1527–1532

    Article  PubMed  Google Scholar 

  12. Metz I et al (2014) Pathologic heterogeneity persists in early active multiple sclerosis lesions. Ann Neurol 75(5):728–738

    Article  PubMed  PubMed Central  Google Scholar 

  13. Charcot JM (1868) Histologie de la sclerose en plaques. Gaz des Hop (Paris) 41:554–566

    Google Scholar 

  14. Tan IL et al (2000) MR venography of multiple sclerosis. AJNR Am J Neuroradiol 21(6):1039–1042

    CAS  PubMed  Google Scholar 

  15. Hammond KE et al (2008) Quantitative in vivo magnetic resonance imaging of multiple sclerosis at 7 Tesla with sensitivity to iron. Ann Neurol 64(6):707–713

    Article  PubMed  Google Scholar 

  16. Tallantyre EC et al (2008) Demonstrating the perivascular distribution of MS lesions in vivo with 7-Tesla MRI. Neurology 70(22):2076–2078

    Article  CAS  PubMed  Google Scholar 

  17. Sati P et al (2012) FLAIR*: a combined MR contrast technique for visualizing white matter lesions and parenchymal veins. Radiology 265(3):926–932

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tallantyre EC et al (2011) Ultra-high-field imaging distinguishes MS lesions from asymptomatic white matter lesions. Neurology 76(6):534–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gaitan MI et al (2013) Multiple sclerosis shrinks intralesional, and enlarges extralesional, brain parenchymal veins. Neurology 80(2):145–151

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kau T et al (2013) The “central vein sign”: is there a place for susceptibility weighted imaging in possible multiple sclerosis? Eur Radiol 23(7):1956–1962

    Article  PubMed  Google Scholar 

  21. Absinta M et al (2013) Seven-tesla phase imaging of acute multiple sclerosis lesions: a new window into the inflammatory process. Ann Neurol 74(5):669–678

    Article  CAS  PubMed  Google Scholar 

  22. Muller K et al (2014) Detailing intra-lesional venous lumen shrinking in multiple sclerosis investigated by sFLAIR MRI at 7-T. J Neurol 261(10):2032–2036

    Article  PubMed  Google Scholar 

  23. Dal-Bianco A et al (2015) Veins in plaques of multiple sclerosis patients—a longitudinal magnetic resonance imaging study at 7 Tesla. Eur Radiol 25(10):2913–2920

    Article  PubMed  Google Scholar 

  24. Lummel N et al (2011) Presence of a central vein within white matter lesions on susceptibility weighted imaging: a specific finding for multiple sclerosis? Neuroradiology 53(5):311–317

    Article  PubMed  Google Scholar 

  25. Wuerfel J et al (2012) Lesion morphology at 7 Tesla MRI differentiates Susac syndrome from multiple sclerosis. Mult Scler 18(11):1592–1599

    Article  PubMed  Google Scholar 

  26. Kilsdonk ID et al (2014) Improved differentiation between MS and vascular brain lesions using FLAIR* at 7 Tesla. Eur Radiol 24(4):841–849

    Article  PubMed  Google Scholar 

  27. Solomon A et al. (2015) “Central vessel sign” on 3T FLAIR* MRI for the differentiation of multiple sclerosis from migraine. Ann Clin Transl Neurol (in press)

  28. George I et al (2016) Clinical 3-tesla FLAIR* MRI improves diagnostic accuracy in multiple sclerosis. Mult Scler [Epub ahead of print]

  29. Pitt D et al (2010) Imaging cortical lesions in multiple sclerosis with ultra-high-field magnetic resonance imaging. Arch Neurol 67(7):812–818

    Article  PubMed  Google Scholar 

  30. Bagnato F et al (2011) Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla. Brain 134(Pt 12):3602–3615

    Article  PubMed  Google Scholar 

  31. Bian W et al. (2012) A serial in vivo 7T magnetic resonance phase imaging study of white matter lesions in multiple sclerosis. Mult Scler 19(1):69–75

    Article  PubMed  Google Scholar 

  32. Yao B et al (2012) Chronic multiple sclerosis lesions: characterization with high-field-strength MR imaging. Radiology 262(1):206–215

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hagemeier J et al (2012) Iron deposition in multiple sclerosis lesions measured by susceptibility-weighted imaging filtered phase: a case control study. J Magn Reson Imaging 36(1):73–83

    Article  PubMed  Google Scholar 

  34. Gaitan MI et al (2013) Initial investigation of the blood-brain barrier in MS lesions at 7 tesla. Mult Scler 19(8):1068–1073

    Article  PubMed  Google Scholar 

  35. Mehta V et al (2013) Iron is a sensitive biomarker for inflammation in multiple sclerosis lesions. PLoS One 8(3):e57573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kutzelnigg A et al (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128(Pt 11):2705–2712

    Article  PubMed  Google Scholar 

  37. Roosendaal SD et al (2008) In vivo MR imaging of hippocampal lesions in multiple sclerosis. J Magn Reson Imaging 27(4):726–731

    Article  PubMed  Google Scholar 

  38. Roosendaal SD et al (2009) Accumulation of cortical lesions in MS: relation with cognitive impairment. Mult Scler 15(6):708–714

    Article  CAS  PubMed  Google Scholar 

  39. Calabrese M et al (2009) Cortical lesions in primary progressive multiple sclerosis: a 2-year longitudinal MR study. Neurology 72(15):1330–1336

    Article  CAS  PubMed  Google Scholar 

  40. Calabrese M et al (2009) Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Arch Neurol 66(9):1144–1150

    Article  PubMed  Google Scholar 

  41. Calabrese M et al (2010) Imaging distribution and frequency of cortical lesions in patients with multiple sclerosis. Neurology 75(14):1234–1240

    Article  CAS  PubMed  Google Scholar 

  42. Calabrese M et al (2010) A 3-year magnetic resonance imaging study of cortical lesions in relapse-onset multiple sclerosis. Ann Neurol 67(3):376–383

    PubMed  Google Scholar 

  43. Calabrese M, Filippi M, Gallo P (2010) Cortical lesions in multiple sclerosis. Nat Rev Neurol 6(8):438–444

    Article  PubMed  Google Scholar 

  44. Calabrese M et al (2012) Cortical lesion load associates with progression of disability in multiple sclerosis. Brain 135(Pt 10):2952–2961

    Article  PubMed  Google Scholar 

  45. Calabrese M et al (2015) Exploring the origins of grey matter damage in multiple sclerosis. Nat Rev Neurosci 16(3):147–158

    Article  CAS  PubMed  Google Scholar 

  46. Filippi M et al (2010) Intracortical lesions: relevance for new MRI diagnostic criteria for multiple sclerosis. Neurology 75(22):1988–1994

    Article  CAS  PubMed  Google Scholar 

  47. Geurts JJ et al (2005) Cortical lesions in multiple sclerosis: combined postmortem MR imaging and histopathology. AJNR Am J Neuroradiol 26(3):572–577

    PubMed  Google Scholar 

  48. Sethi V et al (2012) Improved detection of cortical MS lesions with phase-sensitive inversion recovery MRI. J Neurol Neurosurg Psychiatry 83(9):877–882

    Article  PubMed  Google Scholar 

  49. Mainero C et al (2009) In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI. Neurology 73(12):941–948

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nielsen AS et al (2013) Contribution of cortical lesion subtypes at 7T MRI to physical and cognitive performance in MS. Neurology 81(7):641–649

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fischer MT et al (2013) Disease-specific molecular events in cortical multiple sclerosis lesions. Brain 136(Pt 6):1799–1815

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mainero C et al (2015) A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging. Brain 138(Pt 4):932–945

    Article  PubMed  PubMed Central  Google Scholar 

  53. van der Valk P, De Groot CJ (2000) Staging of multiple sclerosis (MS) lesions: pathology of the time frame of MS. Neuropathol Appl Neurobiol 26(1):2–10

    Article  PubMed  Google Scholar 

  54. Lassmann H (2011) Review: the architecture of inflammatory demyelinating lesions: implications for studies on pathogenesis. Neuropathol Appl Neurobiol 37(7):698–710

    Article  CAS  PubMed  Google Scholar 

  55. Malayeri AA et al. (2016) National institutes of health perspective on reports of gadolinium deposition in the brain. J Am Coll Radiol [Epub ahead of print]

  56. Gaitan MI et al (2011) Evolution of the blood-brain barrier in newly forming multiple sclerosis lesions. Ann Neurol 70(1):22–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van Walderveen MA et al (1998) Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 50(5):1282–1288

    Article  PubMed  Google Scholar 

  58. van Waesberghe JH et al (1999) Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol 46(5):747–754

    Article  PubMed  Google Scholar 

  59. Lassmann H, van Horssen J, Mahad D (2012) Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 8(11):647–656

    Article  CAS  PubMed  Google Scholar 

  60. Chari DM (2007) Remyelination in multiple sclerosis. Int Rev Neurobiol 79:589–620

    Article  CAS  PubMed  Google Scholar 

  61. Franklin RJ, Gallo V (2014) The translational biology of remyelination: past, present, and future. Glia 62(11):1905–1915

    Article  PubMed  Google Scholar 

  62. Prineas JW et al (1993) Multiple sclerosis: remyelination of nascent lesions. Ann Neurol 33(2):137–151

    Article  CAS  PubMed  Google Scholar 

  63. Raine CS, Wu E (1993) Multiple sclerosis: remyelination in acute lesions. J Neuropathol Exp Neurol 52(3):199–204

    Article  CAS  PubMed  Google Scholar 

  64. Patrikios P et al (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129(Pt 12):3165–3172

    Article  PubMed  Google Scholar 

  65. Albert M et al (2007) Extensive cortical remyelination in patients with chronic multiple sclerosis. Brain Pathol 17(2):129–138

    Article  PubMed  Google Scholar 

  66. Goldschmidt T et al (2009) Remyelination capacity of the MS brain decreases with disease chronicity. Neurology 72(22):1914–1921

    Article  CAS  PubMed  Google Scholar 

  67. Bramow S et al (2010) Demyelination versus remyelination in progressive multiple sclerosis. Brain 133(10):2983–2998

    Article  PubMed  Google Scholar 

  68. Chang A et al (2012) Cortical remyelination: a new target for repair therapies in multiple sclerosis. Ann Neurol 72(6):918–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cui QL et al (2013) Oligodendrocyte progenitor cell susceptibility to injury in multiple sclerosis. Am J Pathol 183(2):516–525

    Article  CAS  PubMed  Google Scholar 

  70. Kotter MR, Stadelmann C, Hartung HP (2011) Enhancing remyelination in disease—can we wrap it up? Brain 134(Pt 7):1882–1900

    Article  PubMed  Google Scholar 

  71. Laule C et al (2006) Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology. Mult Scler 12(6):747–753

    Article  CAS  PubMed  Google Scholar 

  72. Sati P et al (2013) Micro-compartment specific T2* relaxation in the brain. Neuroimage 77:268–278

    Article  PubMed  Google Scholar 

  73. Alonso-Ortiz E, Levesque IR, Pike GB (2014) MRI-based myelin water imaging: a technical review. Magn Reson Med 73(1):70–81

    Article  PubMed  CAS  Google Scholar 

  74. Levesque IR et al (2010) Reproducibility of quantitative magnetization-transfer imaging parameters from repeated measurements. Magn Reson Med 64(2):391–400

    PubMed  Google Scholar 

  75. Chen JT et al (2008) Magnetization transfer ratio evolution with demyelination and remyelination in multiple sclerosis lesions. Ann Neurol 63(2):254–262

    Article  PubMed  Google Scholar 

  76. Schmierer K, Parkes HG, So PW (2009) Direct visualization of remyelination in multiple sclerosis using T2-weighted high-field MRI. Neurology 72(5):472

    Article  PubMed  PubMed Central  Google Scholar 

  77. Vellinga MM et al (2008) Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain 131(Pt 3):800–807

    Article  PubMed  Google Scholar 

  78. Tourdias T et al (2012) Assessment of disease activity in multiple sclerosis phenotypes with combined gadolinium- and superparamagnetic iron oxide—enhanced MR imaging. Radiology 264(1):225–233

    Article  PubMed  Google Scholar 

  79. Maarouf A et al. (2015) Ultra-small superparamagnetic iron oxide enhancement is associated with higher loss of brain tissue structure in clinically isolated syndrome. Mult Scler [Epub ahead of print]

  80. Banati RB et al (2000) The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 123(Pt 11):2321–2337

    Article  PubMed  Google Scholar 

  81. Cosenza-Nashat M et al (2009) Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 35(3):306–328

    Article  CAS  PubMed  Google Scholar 

  82. Oh U et al (2011) Translocator protein PET imaging for glial activation in multiple sclerosis. J Neuroimmune Pharmacol 6(3):354–361

    Article  PubMed  Google Scholar 

  83. Politis M, Su P, Piccini P (2012) Imaging of microglia in patients with neurodegenerative disorders. Front Pharmacol 3:96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Politis M et al (2012) Increased PK11195 PET binding in the cortex of patients with MS correlates with disability. Neurology 79(6):523–530

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ratchford JN et al (2012) Decreased microglial activation in MS patients treated with glatiramer acetate. J Neurol 259(6):1199–1205

    Article  CAS  PubMed  Google Scholar 

  86. Takano A et al (2013) In vivo TSPO imaging in patients with multiple sclerosis: a brain PET study with [18F] FEDAA1106. EJNMMI Res 3(1):30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Petzold A (2013) Intrathecal oligoclonal IgG synthesis in multiple sclerosis. J Neuroimmunol 262(1–2):1–10

    Article  CAS  PubMed  Google Scholar 

  88. Lucchinetti CF et al (2011) Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med 365(23):2188–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Magliozzi R et al (2007) Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130(Pt 4):1089–1104

    PubMed  Google Scholar 

  90. Magliozzi R et al (2010) A gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol 68(4):477–493

    Article  CAS  PubMed  Google Scholar 

  91. Howell OW et al (2011) Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 134(Pt 9):2755–2771

    Article  PubMed  Google Scholar 

  92. Choi SR et al (2012) Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain 135(Pt 10):2925–2937

    Article  PubMed  Google Scholar 

  93. Kuerten S et al (2012) Tertiary lymphoid organ development coincides with determinant spreading of the myelin-specific T cell response. Acta Neuropathol 124(6):861–873

    Article  CAS  PubMed  Google Scholar 

  94. Magliozzi R et al (2013) B-cell enrichment and Epstein-Barr virus infection in inflammatory cortical lesions in secondary progressive multiple sclerosis. J Neuropathol Exp Neurol 72(1):29–41

    Article  CAS  PubMed  Google Scholar 

  95. Absinta M et al (2015) Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology 85(1):18–28. doi:10.1212/WNL.0000000000001587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mesaros S et al (2008) Evidence of thalamic gray matter loss in pediatric multiple sclerosis. Neurology 70(13 Pt 2):1107–1112

    Article  CAS  PubMed  Google Scholar 

  97. Henry RG et al (2009) Connecting white matter injury and thalamic atrophy in clinically isolated syndromes. J Neurol Sci 282(1–2):61–66

    Article  PubMed  Google Scholar 

  98. Minagar A et al (2013) The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects. Neurology 80(2):210–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kipp M et al (2015) Thalamus pathology in multiple sclerosis: from biology to clinical application. Cell Mol Life Sci 72(6):1127–1147

    Article  CAS  PubMed  Google Scholar 

  100. Bisecco A et al (2015) Connectivity-based parcellation of the thalamus in multiple sclerosis and its implications for cognitive impairment: a multicenter study. Hum Brain Mapp 36(7):2809–2825

    Article  PubMed  Google Scholar 

  101. Sicotte NL et al (2008) Regional hippocampal atrophy in multiple sclerosis. Brain 131(Pt 4):1134–1141

    Article  CAS  PubMed  Google Scholar 

  102. Longoni G et al (2015) Deficits in memory and visuospatial learning correlate with regional hippocampal atrophy in MS. Brain Struct Funct 220(1):435–444

    Article  PubMed  Google Scholar 

  103. Sacco R et al. (2015) Cognitive impairment and memory disorders in relapsing-remitting multiple sclerosis: the role of white matter, gray matter and hippocampus. J Neurol 262(7):1691–1697

    Article  CAS  PubMed  Google Scholar 

  104. Kearney H, Miller DH, Ciccarelli O (2015) Spinal cord MRI in multiple sclerosis-diagnostic, prognostic and clinical value. Nat Rev Neurol 11(6):327–338

    Article  PubMed  Google Scholar 

  105. Gass A et al (2015) MRI monitoring of pathological changes in the spinal cord in patients with multiple sclerosis. Lancet Neurol 14(4):443–454

    Article  PubMed  Google Scholar 

  106. Horsfield MA et al. (2010) Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: application in multiple sclerosis. Neuroimage 50(2):446–455

    Article  PubMed  PubMed Central  Google Scholar 

  107. Liu W et al (2014) In vivo imaging of spinal cord atrophy in neuroinflammatory diseases. Ann Neurol 76(3):370–378

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ciccarelli O et al (2008) Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet Neurol 7(8):715–727

    Article  PubMed  Google Scholar 

  109. Gordon-Lipkin E et al (2007) Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology 69(16):1603–1609

    Article  CAS  PubMed  Google Scholar 

  110. Siger M et al (2008) Optical coherence tomography in multiple sclerosis: thickness of the retinal nerve fiber layer as a potential measure of axonal loss and brain atrophy. J Neurol 255(10):1555–1560

    Article  PubMed  Google Scholar 

  111. Petzold A et al (2010) Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 9(9):921–932

    Article  PubMed  Google Scholar 

  112. Dorr J et al (2011) Association of retinal and macular damage with brain atrophy in multiple sclerosis. PLoS One 6(4):e18132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Saidha S et al. (2015) Optical coherence tomography reflects brain atrophy in MS: a four year study. Ann Neurol 78(5):801–813

    Article  PubMed  PubMed Central  Google Scholar 

  114. Filippi M, Rocca MA (2013) Present and future of fMRI in multiple sclerosis. Expert Rev Neurother 13(12 Suppl):27–31

    Article  PubMed  CAS  Google Scholar 

  115. Mainero C et al (2004) Enhanced brain motor activity in patients with MS after a single dose of 3,4-diaminopyridine. Neurology 62(11):2044–2050

    Article  CAS  PubMed  Google Scholar 

  116. Filippi M et al (2012) Multiple sclerosis: effects of cognitive rehabilitation on structural and functional MR imaging measures—an explorative study. Radiology 262(3):932–940

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to Prof. Andrea Falini (Head of the Department of Neuroradiology, San Raffaele Hospital), Dr. Vittorio Martinelli (Head of Clinical Trials Unit, Division of Neuroscience, San Raffaele Hospital), and Dr. Pascal Sati and Dr. Govind Nair (staff scientists, NINDS, NIH) for valuable advice, assistance with MRI data acquisition/post-processing, and help in figures’ preparation. This work was supported in part by the Intramural Research Program of NINDS, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Filippi.

Ethics declarations

Conflicts of interest

Martina Absinta reports no actual or potential conflict of interest. Daniel S. Reich received research support from the Myelin Repair Foundation and Vertex Pharmaceuticals. Massimo Filippi received personal compensation for activities with Merck-Serono, Genmab, Biogen-Dompé, Bayer-Schering, and Teva Neuroscience as a consultant, speaker, and advisory board member. He received also research support from Merck-Serono, Biogen-Dompé, Bayer-Schering, Teva Neuroscience and Fondazione Italiana Sclerosi Multipla (FISM).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Absinta, M., Reich, D.S. & Filippi, M. Spring cleaning: time to rethink imaging research lines in MS?. J Neurol 263, 1893–1902 (2016). https://doi.org/10.1007/s00415-016-8060-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-016-8060-0

Keywords

Navigation