Skip to main content

Advertisement

Log in

Clinical, neurophysiological and morphological study of dominant intermediate Charcot-Marie-Tooth type C neuropathy

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Dominant intermediate Charcot-Marie-Tooth neuropathy subtype C (DI-CMTC) was associated with mutations in the YARS gene, encoding tyrosyl-tRNA synthetase, in two large unrelated Bulgarian and US pedigrees and one sporadic case. Here for the first time we describe the clinical, neurophysiological and histopathological features, and phenotypic differences between these two DI-CMTC families. Twenty-one affected individuals from the US family and 27 from the Bulgarian family were evaluated. The mean age of onset in US subjects was 10.7 years in men and 7.3 years in women, while in the Bulgarian participants it was 18.2 years in men and 33.7 years in women. The course was slowly progressive. Extensor digitorum brevis atrophy was uniform. Atrophy and/or weakness of upper and lower limb muscles were found in over 50 % of the subjects. Nerve conduction studies (NCS) were abnormal in all US adults and five of six children and all Bulgarian patients except one asymptomatic 25-year-old man. Median motor NCS were in the range of 29.5–45.6 m/s in the US family and 24.7–57.8 m/s in the Bulgarian family. Sural sensory nerve action potentials were absent in 14/21 and 4/12 NCS from adult US and Bulgarian participants, respectively. Analysis of sural nerve biopsies from US patients revealed age-dependent morphological changes of axonal degeneration, absence of onion bulbs, and <10 % fibers with segmental remyelination. Our findings provide further insights into the diagnosis and pathology of intermediate CMT. They also extend the phenotypic spectrum of peripheral neuropathies associated with aminoacyl-tRNA synthetase mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Buchthal F, Behse F (1977) Peroneal muscular atrophy (PMA) and related disorders I. Clinical manifestations as related to biopsy findings, nerve conduction and electromyography. Brain 100(Pt 1):41–66

    Article  PubMed  Google Scholar 

  2. Dyck PJ, Lambert EH (1968) Lower motor and primary sensory neuron diseases with peroneal muscular atrophy I. Neurologic, genetic, and electrophysiologic findings in hereditary polyneuropathies. Arch Neurol 18(6):603–618

    Article  CAS  PubMed  Google Scholar 

  3. Thomas PK, Calne DB (1974) Motor nerve conduction velocity in peroneal muscular atrophy: evidence for genetic heterogeneity. J Neurol Neurosurg Psychiatry 37(1):68–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Madrid R, Bradley WG, Davis CJ (1977) The peroneal muscular atrophy syndrome. Clinical, genetic, electrophysiological and nerve biopsy studies. Part 2. Observations on pathological changes in sural nerve biopsies. J Neurol Sci 32(1):91–122

    Article  CAS  PubMed  Google Scholar 

  5. Bradley WG, Madrid R, Davis CJ (1977) The peroneal muscular atrophy syndrome. Clinical genetic, electrophysiological and nerve biopsy studies. Part 3. Clinical, electrophysiological and pathological correlations. J Neurol Sci 32(1):123–136

    Article  CAS  PubMed  Google Scholar 

  6. Davis CJ, Bradley WG, Madrid R (1978) The peroneal muscular atrophy syndrome: clinical, genetic, electrophysiological and nerve biopsy studies I. Clinical, genetic and electrophysiological findings and classification. J Genet Hum 26(4):311–349

    CAS  PubMed  Google Scholar 

  7. Rossi A, Paradiso C, Cioni R, Rizzuto N, Guazzi G (1985) Charcot-Marie-Tooth disease: study of a large kinship with an intermediate form. J Neurol 232(2):91–98

    Article  CAS  PubMed  Google Scholar 

  8. Villanova M, Timmerman V, De JP, Malandrini A, Rizzuto N, Van BC et al (1998) Charcot-Marie-Tooth disease: an intermediate form. Neuromuscul Disord 8(6):392–393

    Article  CAS  PubMed  Google Scholar 

  9. Kennerson ML, Zhu D, Gardner RJ, Storey E, Merory J, Robertson SP et al (2001) Dominant intermediate Charcot-Marie-Tooth neuropathy maps to chromosome 19p12–p13.2. Am J Hum Genet 69(4):883–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mastaglia FL, Nowak KJ, Stell R, Phillips BA, Edmondston JE, Dorosz SM et al (1999) Novel mutation in the myelin protein zero gene in a family with intermediate hereditary motor and sensory neuropathy. J Neurol Neurosurg Psychiatry 67(2):174–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nicholson G, Myers S (2006) Intermediate forms of Charcot-Marie-Tooth neuropathy: a review. Neuromol Med 8(1–2):123–130

    CAS  Google Scholar 

  12. Malandrini A, Ceuterick C, Villanov M, Gambelli S, Berti G, Rossi A et al (2001) Ultrastructural findings in the peripheral nerve in a family with the intermediate form of Charcot-Marie-Tooth disease. J Submicrosc Cytol Pathol 33(1–2):59–63

    CAS  PubMed  Google Scholar 

  13. Zuchner S, Noureddine M, Kennerson M, Verhoeven K, Claeys K, De JP et al (2005) Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie-Tooth disease. Nat Genet 37(3):289–294

    Article  PubMed  Google Scholar 

  14. Claeys KG, Zuchner S, Kennerson M, Berciano J, Garcia A, Verhoeven K et al (2009) Phenotypic spectrum of dynamin 2 mutations in Charcot-Marie-Tooth neuropathy. Brain 132(Pt 7):1741–1752

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fabrizi GM, Ferrarini M, Cavallaro T, Cabrini I, Cerini R, Bertolasi L et al (2007) Two novel mutations in dynamin-2 cause axonal Charcot-Marie-Tooth disease. Neurology 69(3):291–295

    Article  CAS  PubMed  Google Scholar 

  16. Bitoun M, Stojkovic T, Prudhon B, Maurage CA, Latour P, Vermersch P et al (2008) A novel mutation in the dynamin 2 gene in a Charcot-Marie-Tooth type 2 patient: clinical and pathological findings. Neuromuscul Disord 18(4):334–338

    Article  PubMed  Google Scholar 

  17. Boyer O, Nevo F, Plaisier E, Funalot B, Gribouval O, Benoit G et al (2011) INF2 mutations in Charcot-Marie-Tooth disease with glomerulopathy. N Engl J Med 365(25):2377–2388

    Article  CAS  PubMed  Google Scholar 

  18. Soong BW, Huang YH, Tsai PC, Huang CC, Pan HC, Lu YC et al (2013) Exome sequencing identifies GNB4 mutations as a cause of dominant intermediate Charcot-Marie-Tooth disease. Am J Hum Genet 92(3):422–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jordanova A, Thomas FP, Guergueltcheva V, Tournev I, Gondim FA, Ishpekova B et al (2003) Dominant intermediate Charcot-Marie-Tooth type C maps to chromosome 1p34-p35. Am J Hum Genet 73(6):1423–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jordanova A, Irobi J, Thomas FP, Van DP, Meerschaert K, Dewil M et al (2006) Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nat Genet 38(2):197–202

    Article  CAS  PubMed  Google Scholar 

  21. Merkies IS, Schmitz PI, van der Meche FG, van Doorn PA (2000) Psychometric evaluation of a new sensory scale in immune-mediated polyneuropathies. Inflammatory Neuropathy Cause and Treatment (INCAT) Group. Neurology 54(4):943–949

    Article  CAS  PubMed  Google Scholar 

  22. Parano E, Uncini A, De Vivo DC, Lovelace RE (1993) Electrophysiologic correlates of peripheral nervous system maturation in infancy and childhood. J Child Neurol 8(4):336–338

    Article  CAS  PubMed  Google Scholar 

  23. Miller RG, Kuntz NL (1986) Nerve conduction studies in infants and children. J Child Neurol 1(1):19–26

    Article  CAS  PubMed  Google Scholar 

  24. Martinez AC, Ferrer MT, Conde MC, Bernacer M (1978) Motor conduction velocity and H-reflex in infancy and childhood II. Intra and extrauterine maturation of the nerve fibres. Development of the peripheral nerve from 1 month to 11 years of age. Electromyogr Clin Neurophysiol 18(1):11–27

    CAS  PubMed  Google Scholar 

  25. Thomas FP, Lebo RV, Rosoklija G, Ding XS, Lovelace RE, Latov N et al (1994) Tomaculous neuropathy in chromosome 1 Charcot-Marie-Tooth syndrome. Acta Neuropathol 87(1):91–97

    Article  CAS  PubMed  Google Scholar 

  26. Jacobs JM, Love S (1985) Qualitative and quantitative morphology of human sural nerve at different ages. Brain 108(Pt 4):897–924

    Article  PubMed  Google Scholar 

  27. Storkebaum E, Leitao-Goncalves R, Godenschwege T, Nangle L, Mejia M, Bosmans I et al (2009) Dominant mutations in the tyrosyl-tRNA synthetase gene recapitulate in Drosophila features of human Charcot-Marie-Tooth neuropathy. Proc Natl Acad Sci USA 106(28):11782–11787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nicholson GA (1991) Penetrance of the hereditary motor and sensory neuropathy Ia mutation: assessment by nerve conduction studies. Neurology 41(4):547–552

    Article  CAS  PubMed  Google Scholar 

  29. Rossi A, Paradiso C, Dell’Anna P, Mondelli M (1985) Short latency somatosensory evoked potentials in Charcot-Marie-Tooth disease. A family with an intermediate form. Acta Neurol Scand 71(2):156–163

    Article  CAS  PubMed  Google Scholar 

  30. Hahn AF, Ainsworth PJ, Naus CC, Mao J, Bolton CF (2000) Clinical and pathological observations in men lacking the gap junction protein connexin 32. Muscle Nerve Suppl 9:S39–S48

    Article  CAS  PubMed  Google Scholar 

  31. Antonellis A, Ellsworth RE, Sambuughin N, Puls I, Abel A, Lee-Lin SQ et al (2003) Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am J Hum Genet 72(5):1293–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Latour P, Thauvin-Robinet C, Baudelet-Mery C, Soichot P, Cusin V, Faivre L et al (2010) A major determinant for binding and aminoacylation of tRNA(Ala) in cytoplasmic Alanyl-tRNA synthetase is mutated in dominant axonal Charcot-Marie-Tooth disease. Am J Hum Genet 86(1):77–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vester A, Velez-Ruiz G, McLaughlin HM, Lupski JR, Talbot K, Vance JM et al (2013) A loss-of-function variant in the human histidyl-tRNA synthetase (HARS) gene is neurotoxic in vivo. Hum Mutat 34(1):191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gonzalez M, McLaughlin H, Houlden H, Guo M, Yo-Tsen L, Hadjivassilious M et al (2013) Exome sequencing identifies a significant variant in methionyl-tRNA synthetase (MARS) in a family with late-onset CMT2. J Neurol Neurosurg Psychiatry 84(11):1247–1249

    Article  PubMed  PubMed Central  Google Scholar 

  35. McLaughlin HM, Sakaguchi R, Liu C, Igarashi T, Pehlivan D, Chu K et al (2010) Compound heterozygosity for loss-of-function lysyl-tRNA synthetase mutations in a patient with peripheral neuropathy. Am J Hum Genet 87(4):560–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The American team received support for design and conduct of the study and collection of data from The Neuropathy Association and the St. Louis Chapter of The Neuropathy Association. The Bulgarian team received support for collection of data from the Research Fund of Sofia Medical University and National Science Fund of the Bulgarian Ministry of Education and Science. The Belgian team received support for design and conduct of the study and collection of data from the Fund for Scientific Research (FWO-Flanders), the Research Fund of the University of Antwerp (BOF-UA), the Medical Foundation Queen Elisabeth (GSKE), the Association Belge contre les Maladies Neuro-Musculaires (ABMM), and the US Muscular Dystrophy Association. The authors thank the study participants for their cooperation, Professors Mitko Abadjiev and Veneta Georgieva for pedigree data, and the Bulgarian Association for Neuromuscular Disorders and Ethnic Minorities Health Problems Foundation for assistance during patient visits.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Florian P. Thomas or Albena Jordanova.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical standards

All human studies were approved by the ethics committees of St. Louis University and Medical University-Sofia and were performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Additional information

F. P. Thomas and V. Guergueltcheva have contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, F.P., Guergueltcheva, V., Gondim, F.A.A. et al. Clinical, neurophysiological and morphological study of dominant intermediate Charcot-Marie-Tooth type C neuropathy. J Neurol 263, 467–476 (2016). https://doi.org/10.1007/s00415-015-7989-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-015-7989-8

Keywords

Navigation