Skip to main content

Advertisement

Log in

Pattern of Peripheral Nerve Involvement in Spinocerebellar Ataxia Type 2: a Neurophysiological Assessment

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Peripheral neuropathy is frequent in spinocerebellar ataxia type 2 (SCA2), but the pattern and characteristics of nerve involvement are still an unsettled issue. This study aimed to evaluate the prevalence, extent, and distribution of nerve involvement in SCA2 patients through neurophysiological studies. Thirty-one SCA2 patients and 20 control subjects were enrolled in this study. All subjects were prospectively evaluated through electromyography, including nerve conduction, needle electromyography in proximal and distal muscles of the upper and lower limbs, and sural radial amplitude ratio (SRAR). We aimed to differentiate distal axonopathy from diffuse nerve commitment, characterizing neuronopathy. Nerve involvement was observed in 83.6 % (26 individuals) of SCA2 patients. Among these, 19 had diffuse sensory abnormalities on nerve conduction predominantly on the upper limbs, with diffuse chronic denervation on needle electromyography and elevated SRAR values. Four individuals had only diffuse sensory involvement, and 2 had only motor involvement on needle evaluation and normal nerve conduction. These were interpreted as neuronopathy due to the diffuse distribution of the involvement. One individual had distal sensory axonopathy, with lower limb predominance. In this study, we found neuronopathy as the main pattern of nerve involvement in SCA2 patients and that motor involvement is a frequent feature. This information brings new insights into the understanding of the pathophysiology of nerve involvement in SCA2 and sets some key points about the phenotype, which is relevant to guide the genetic/molecular diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet. 2004;3:291–304.

    Article  PubMed  Google Scholar 

  2. Lastres-Becker I, Rüb U, Auburger G. Spinocerebellar ataxia 2 (SCA2). Cerebellum. 2008;7:115–24.

    Article  CAS  PubMed  Google Scholar 

  3. Velázquez-Perez L, Rodriguez-Labrada R, Garcia Rodriguez JC, Almaguer-Mederos LE, Cruz-Marino T, Laffita-Mesa JM. A comprehensive review of spinocerebellar ataxia type 2 in Cuba. Cerebellum. 2011;10:184–98.

    Article  PubMed  Google Scholar 

  4. Wadia NH, Swami RK. A new form of heredo-familial spinocerebellar degeneration with slow eye movements (nine families). Brain. 1971;94:359–74.

    Article  CAS  PubMed  Google Scholar 

  5. Schols L, Linnemann C, Globas C. Electrophysiology in spinocerebellar ataxias: spread of disease and characteristic findings. Cerebellum. 2008;7(2):198–203.

    Article  PubMed  Google Scholar 

  6. Pedroso JL, Bezerra ML, Braga-Neto P, Pinheiro DS, Minett T, do Prado GF, et al. Is neuropathy involved with restless legs syndrome in Machado Joseph disease? Eur Neurol. 2011;66:200–3.

    Article  PubMed  Google Scholar 

  7. Escorcio Bezerra ML Pedroso JL, Pinheiro DS, Braga-Neto P, Povoas B, Braga NI, et al. Pattern of peripheral nerve involvement in Machado-Joseph disease: neuronopathy or distal axonopathy? A clinical and neurophysiological evaluation. Eur Neurol. 2013;69:129–33.

    Article  PubMed  Google Scholar 

  8. Abele M, Burk K, Andres F, Topka H, Laccone F, Bosch S, et al. Autosomal dominant cerebellar ataxia type. Nerve conduction and evoked potential studies in families with SCA1, SCA2 and SCA3. Brain. 1997;120:2141–8.

    Article  PubMed  Google Scholar 

  9. Kubis N, Du’rr A, Gugenheim M, Chneiweiss H, Mazzetti P, Brice A, et al. Polyneuropathy in autossomal dominant cerebellar ataxias: phenotype-genotype correlation. Muscle Nerve. 1999;22:712–7.

    Article  CAS  PubMed  Google Scholar 

  10. Yadav R, Pal PK, Krishna N, Amar BR, Jain S, Purushottam M. Electrophysiological evaluation of spinocerebellar ataxias 1, 2 and 3. J Neurol Sci. 2012;312:142–5.

    Article  PubMed  Google Scholar 

  11. Álvarez-Paradelo S, García A, Infante J, Berciano J. Multimodal neurophysiological study of SCA2 and SCA3 autosomal dominant hereditary spinocerebellar ataxias. Neurologia. 2011;26:157–65.

    Article  PubMed  Google Scholar 

  12. van de Warrenburg BP, Notermans NC, Schelhaas HJ, van Alfen N, Sinke RJ, Knoers NV, et al. Peripheral nerve involvement in spinocerebellar ataxias. Arch Neurol. 2004;61:257–61.

    Article  PubMed  Google Scholar 

  13. Linnemann C, Tezenas du Montcel S, Rakowicz M, Schmitz-Hübsch T, Szymanski S,Berciano J, van de Warrenburg BP, Pedersen K, Depondt C, Rola R, Klockgether T,García A, Mutlu G, Schöls L. Peripheral neuropathy in spinocerebellar ataxia type 1, 2, 3, and 6. Cerebellum. 2015.

  14. Crum BA, Joseph KA. Varied electrophysiologic patterns in spinocerebellar ataxia type 2. Eur J Neurol. 2006;13:194–7.

    Article  CAS  PubMed  Google Scholar 

  15. Braga-Neto P, Pedroso JL, Felício AC, Abrahão A, Dutra LA, Bezerra ML, et al. SCA2 presenting as an ataxia-parkinsonism-motor neuron disease syndrome. Arq Neuropsiquiatr. 2011;69:405–6.

    Article  PubMed  Google Scholar 

  16. Nanetti L, Fancellu R, Tomasello C, Gellera C, Pareyson D, Mariotti C. Rare association of motor neuron disease and spinocerebellar ataxia type 2 (SCA2): a new case and review of the literature. J Neurol. 2009;256:1926–8.

    Article  PubMed  Google Scholar 

  17. Braga-Neto P, Godeiro-Junior C, Dutra LA, Pedroso JL, Barsottini OG. Translation and validation into Brazilian version of the Scale of the Assessment and Rating of Ataxia (SARA). Arq Neuropsiquiatr. 2010;68:228–30.

    Article  PubMed  Google Scholar 

  18. de Castilhos RM, Furtado GV, Gheno TC, Schaeffer P, Russo A, Barsottini O, et al. Spinocerebellar ataxias in Brazil—frequencies and modulating effects of related genes. 2014;13(1):17.

    CAS  Google Scholar 

  19. Nobrega JA, Pinheiro DS, Manzano GM, Kimura J. Various aspects of F-wave values in a healthy population. Clin Neurophysiol. 2004;115:2336–42.

    Article  PubMed  Google Scholar 

  20. England JD, Gronseth GS, Franklin G, Miller RG, Asbury AK, Carter GT, et al. Distal symmetric polyneuropathy: a definition for clinical research. Neurology. 2005;64:199–207.

    Article  CAS  PubMed  Google Scholar 

  21. Esper GJ, Nardin RA, Benatar M, Sax TW, Acosta JA, Raynor EM. Sural and radial sensory responses in healthy adults: diagnostic implications for polyneuropathy. Muscle Nerve. 2005;31:628–32.

    Article  PubMed  Google Scholar 

  22. Rutkove SB, Kothari MJ, Raynor EM, Levy ML, Fadic R, Nardin RA. Sural/radial amplitude ratio in the diagnosis of mild axonal polyneuropathy. Muscle Nerve. 1997;20:1236–41.

    Article  CAS  PubMed  Google Scholar 

  23. França Jr MC, D’abreu A, Nucci A, Cendes F, Lopes-Cendes I. Prospective study of peripheral neuropathy in Machado-Joseph disease. Muscle Nerve. 2009;40:1012–8.

    Article  Google Scholar 

  24. Velázquez-Pérez L, Cruz GS, Ochoa NC, Labrada RR, Díaz JR, Mederos LA, et al. Electrophysiological features in patients and presymptomatic relatives with spinocerebellar ataxia type 2. J Neurol Sci. 2007;263:158–64.

    Article  PubMed  Google Scholar 

  25. Huynh DP, Del Bigio MR, Ho DH, Pulst SM. Expression of ataxin-2 in brains from normal individuals and patients with Alzheimer’s disease and spinocerebellar ataxia 2. Ann Neurol. 1999;45:232–41.

    Article  CAS  PubMed  Google Scholar 

  26. Robitaille Y, Lopes-Cendes I, Becher M, Rouleau G, Clark AW. The neuropathology of CAG repeat diseases: review and update of genetic and molecular features. Brain Pathol. 1997;7:901–26.

    Article  CAS  PubMed  Google Scholar 

  27. Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol. 1999;97:306–10.

    Article  CAS  PubMed  Google Scholar 

  28. Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 2010;466:1069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baumer D, East SZ, Tseu B, Zeman A, Hilton TK, et al. FTLD-ALS of TDP-43 type and SCA2 in a family with a full ataxin-2 polyglutamine expansion. Acta Neuropathol. 2014;128:597–604.

    Article  CAS  PubMed  Google Scholar 

  30. Pinto S, De Carvalho M. Machado-Joseph disease presenting as motor neuron disease. Amyotroph Lateral Scler. 2008;9:188–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luiz Pedroso.

Ethics declarations

Conflict of Interests

We have no conflict of interest.

Financial Disclosure

We have nothing to disclose.

Ethical Statement

Full consent was obtained from the patients to be enrolled in this study. Our Institutional Research Ethics Board approved this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezerra, M.L.E., Pedroso, J.L., Braga-Neto, P. et al. Pattern of Peripheral Nerve Involvement in Spinocerebellar Ataxia Type 2: a Neurophysiological Assessment. Cerebellum 15, 767–773 (2016). https://doi.org/10.1007/s12311-015-0753-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-015-0753-x

Keywords

Navigation