Skip to main content

Advertisement

Log in

Dissecting IWG-2 typical and atypical Alzheimer’s disease: insights from cerebrospinal fluid analysis

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Pathobiological factors underlying phenotypic diversity in Alzheimer’s disease (AD) are incompletely understood. We used an extended cerebrospinal fluid (CSF) panel to explore differences between “typical” with “atypical” AD and between amnestic, posterior cortical atrophy, logopenic aphasia and frontal variants. We included 97 subjects fulfilling International Working Group-2 research criteria for AD of whom 61 had “typical” AD and 36 “atypical” syndromes, and 30 controls. CSF biomarkers included total tau (T-tau), phosphorylated tau (P-tau), amyloid β1-42, amyloid βX-38/40/42, YKL-40, neurofilament light (NFL), and amyloid precursor proteins α and β. The typical and atypical groups were matched for age, sex, severity and rate of cognitive decline and had similar biomarker profiles, with the exception of NFL which was higher in the atypical group (p = 0.03). Sub-classifying the atypical group into its constituent clinical syndromes, posterior cortical atrophy was associated with the lowest T-tau [604.4 (436.8–675.8) pg/mL], P-tau (79.8 ± 21.8 pg/L), T-tau/Aβ1-42 ratio [2.3 (1.4–2.6)], AβX-40/X-42 ratio (22.1 ± 5.8) and rate of cognitive decline [1.9 (0.75–4.25) MMSE points/year]. Conversely, the frontal variant group had the highest levels of T-tau [1185.4 (591.7–1329.3) pg/mL], P-tau (116.4 ± 45.4 pg/L), T-tau/Aβ1-42 ratio [5.2 (3.3–6.9)] and AβX-40/X-42 ratio (27.9 ± 7.5), and rate of cognitive decline. Whilst on a group level IWG-2 “typical” and “atypical” AD share similar CSF profiles, which are very different from controls, atypical AD is a heterogeneous entity with evidence for subtle differences in amyloid processing and neurodegeneration between different clinical syndromes. These findings also have practical implications for the interpretation of clinical CSF biomarker results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Blennow K, Wallin A, Gottfries CG (1991) Presence of parietotemporal symptomatology distinguishes early and late onset Alzheimers-disease. Int J Geriatr Psychiatry 6(3):147–154. doi:10.1002/gps.930060306

    Article  Google Scholar 

  2. Koedam EL, Lauffer V, van der Vlies AE, van der Flier WM, Scheltens P, Pijnenburg YA (2010) Early-versus late-onset Alzheimer’s disease: more than age alone. J Alzheimer’s Dis 19(4):1401–1408. doi:10.3233/JAD-2010-1337

    Google Scholar 

  3. Benson DF, Davis RJ, Snyder BD (1988) Posterior cortical atrophy. Arch Neurol 45(7):789–793

    Article  CAS  PubMed  Google Scholar 

  4. Mendez MF, Ghajarania M, Perryman KM (2002) Posterior cortical atrophy: clinical characteristics and differences compared to Alzheimer’s disease. Dement Geriatr Cogn Disord 14(1):33–40. doi:10.1159/000058331

    Article  PubMed  Google Scholar 

  5. Crutch SJ, Lehmann M, Schott JM, Rabinovici GD, Rossor MN, Fox NC (2012) Posterior cortical atrophy. Lancet Neurol 11(2):170–178. doi:10.1016/S1474-4422(11)70289-7

    Article  PubMed Central  PubMed  Google Scholar 

  6. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, Ogar JM, Rohrer JD, Black S, Boeve BF, Manes F, Dronkers NF, Vandenberghe R, Rascovsky K, Patterson K, Miller BL, Knopman DS, Hodges JR, Mesulam MM, Grossman M (2011) Classification of primary progressive aphasia and its variants. Neurology 76(11):1006–1014. doi:10.1212/WNL.0b013e31821103e6

    Article  PubMed Central  PubMed  Google Scholar 

  7. Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, DeKosky ST, Gauthier S, Selkoe D, Bateman R, Cappa S, Crutch S, Engelborghs S, Frisoni GB, Fox NC, Galasko D, Habert MO, Jicha GA, Nordberg A, Pasquier F, Rabinovici G, Robert P, Rowe C, Salloway S, Sarazin M, Epelbaum S, de Souza LC, Vellas B, Visser PJ, Schneider L, Stern Y, Scheltens P, Cummings JL (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13(6):614–629. doi:10.1016/S1474-4422(14)70090-0

    Article  PubMed  Google Scholar 

  8. Ossenkoppele R, Schonhaut DR, Baker SL, O’Neil JP, Janabi M, Ghosh PM, Santos M, Miller ZA, Bettcher BM, Gorno-Tempini ML, Miller BL, Jagust WJ, Rabinovici GD (2015) Tau, amyloid, and hypometabolism in a patient with posterior cortical atrophy. Ann Neurol 77(2):338–342. doi:10.1002/ana.24321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lehmann M, Crutch SJ, Ridgway GR, Ridha BH, Barnes J, Warrington EK, Rossor MN, Fox NC (2011) Cortical thickness and voxel-based morphometry in posterior cortical atrophy and typical Alzheimer’s disease. Neurobiol Aging 32(8):1466–1476. doi:10.1016/j.neurobiolaging.2009.08.017

    Article  PubMed  Google Scholar 

  10. Madhavan A, Whitwell JL, Weigand SD, Duffy JR, Strand EA, Machulda MM, Tosakulwong N, Senjem ML, Gunter JL, Lowe VJ, Petersen RC, Jack CR Jr, Josephs KA (2013) FDG PET and MRI in logopenic primary progressive aphasia versus dementia of the Alzheimer’s type. PLoS One 8(4):e62471. doi:10.1371/journal.pone.0062471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lehmann M, Ghosh PM, Madison C, Laforce R Jr, Corbetta-Rastelli C, Weiner MW, Greicius MD, Seeley WW, Gorno-Tempini ML, Rosen HJ, Miller BL, Jagust WJ, Rabinovici GD (2013) Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease. Brain 136(Pt 3):844–858. doi:10.1093/brain/aws327

    Article  PubMed Central  PubMed  Google Scholar 

  12. Schott JM, Ridha BH, Crutch SJ, Healy DG, Uphill JB, Warrington EK, Rossor MN, Fox NC (2006) Apolipoprotein e genotype modifies the phenotype of Alzheimer disease. Arch Neurol 63(1):155–156. doi:10.1001/archneur.63.1.155

    Article  PubMed  Google Scholar 

  13. Carrasquillo MM, Khan Q, Murray ME, Krishnan S, Aakre J, Pankratz VS, Nguyen T, Ma L, Bisceglio G, Petersen RC, Younkin SG, Dickson DW, Boeve BF, Graff-Radford NR, Ertekin-Taner N (2014) Late-onset Alzheimer disease genetic variants in posterior cortical atrophy and posterior AD. Neurology 82(16):1455–1462. doi:10.1212/WNL.0000000000000335

    Article  PubMed Central  PubMed  Google Scholar 

  14. van der Flier WM, Schoonenboom SN, Pijnenburg YA, Fox NC, Scheltens P (2006) The effect of APOE genotype on clinical phenotype in Alzheimer disease. Neurology 67(3):526–527. doi:10.1212/01.wnl.0000228222.17111.2a

    Article  PubMed  Google Scholar 

  15. Strozyk D, Blennow K, White LR, Launer LJ (2003) CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 60(4):652–656

    Article  CAS  PubMed  Google Scholar 

  16. Palmqvist S, Zetterberg H, Blennow K, Vestberg S, Andreasson U, Brooks DJ, Owenius R, Hagerstrom D, Wollmer P, Minthon L, Hansson O (2014) Accuracy of brain amyloid detection in clinical practice using cerebrospinal fluid beta-amyloid 42: a cross-validation study against amyloid positron emission tomography. JAMA Neurol 71(10):1282–1289. doi:10.1001/jamaneurol.2014.1358

    Article  PubMed  Google Scholar 

  17. Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6(3):131–144. doi:10.1038/nrneurol.2010.4

    Article  CAS  PubMed  Google Scholar 

  18. Hampel H, Burger K, Pruessner JC, Zinkowski R, DeBernardis J, Kerkman D, Leinsinger G, Evans AC, Davies P, Moller HJ, Teipel SJ (2005) Correlation of cerebrospinal fluid levels of tau protein phosphorylated at threonine 231 with rates of hippocampal atrophy in Alzheimer disease. Arch Neurol 62(5):770–773. doi:10.1001/archneur.62.5.770

    Article  PubMed  Google Scholar 

  19. Buerger K, Ewers M, Pirttila T, Zinkowski R, Alafuzoff I, Teipel SJ, DeBernardis J, Kerkman D, McCulloch C, Soininen H, Hampel H (2006) CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain 129(Pt 11):3035–3041. doi:10.1093/brain/awl269

    Article  PubMed  Google Scholar 

  20. Craig-Schapiro R, Perrin RJ, Roe CM, Xiong C, Carter D, Cairns NJ, Mintun MA, Peskind ER, Li G, Galasko DR, Clark CM, Quinn JF, D’Angelo G, Malone JP, Townsend RR, Morris JC, Fagan AM, Holtzman DM (2010) YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry 68(10):903–912. doi:10.1016/j.biopsych.2010.08.025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Sjogren M, Rosengren L, Minthon L, Davidsson P, Blennow K, Wallin A (2000) Cytoskeleton proteins in CSF distinguish frontotemporal dementia from AD. Neurology 54(10):1960–1964

    Article  CAS  PubMed  Google Scholar 

  22. Lewczuk P, Kornhuber J, Vanmechelen E, Peters O, Heuser I, Maier W, Jessen F, Burger K, Hampel H, Frolich L, Henn F, Falkai P, Ruther E, Jahn H, Luckhaus C, Perneczky R, Schmidtke K, Schroder J, Kessler H, Pantel J, Gertz HJ, Vanderstichele H, de Meyer G, Shapiro F, Wolf S, Bibl M, Wiltfang J (2010) Amyloid beta peptides in plasma in early diagnosis of Alzheimer’s disease: a multicenter study with multiplexing. Exp Neurol 223(2):366–370. doi:10.1016/j.expneurol.2009.07.024

    Article  CAS  PubMed  Google Scholar 

  23. Brinkmalm G, Brinkmalm A, Bourgeois P, Persson R, Hansson O, Portelius E, Mercken M, Andreasson U, Parent S, Lipari F, Ohrfelt A, Bjerke M, Minthon L, Zetterberg H, Blennow K, Nutu M (2013) Soluble amyloid precursor protein alpha and beta in CSF in Alzheimer’s disease. Brain Res 1513:117–126. doi:10.1016/j.brainres.2013.03.019

    Article  CAS  PubMed  Google Scholar 

  24. Bibl M, Gallus M, Welge V, Esselmann H, Wiltfang J (2012) Aminoterminally truncated and oxidized amyloid-beta peptides in the cerebrospinal fluid of Alzheimer’s disease patients. J Alzheimer’s Dis 29(4):809–816. doi:10.3233/JAD-2012-111796

    CAS  Google Scholar 

  25. Duits FH, Teunissen CE, Bouwman FH, Visser PJ, Mattsson N, Zetterberg H, Blennow K, Hansson O, Minthon L, Andreasen N, Marcusson J, Wallin A, Rikkert MO, Tsolaki M, Parnetti L, Herukka SK, Hampel H, De Leon MJ, Schroder J, Aarsland D, Blankenstein MA, Scheltens P, van der Flier WM (2014) The cerebrospinal fluid “Alzheimer profile”: easily said, but what does it mean? Alzheimer’s Dement 10(6):713–723. doi:10.1016/j.jalz.2013.12.023

    Article  Google Scholar 

  26. Tang-Wai DF, Graff-Radford NR, Boeve BF, Dickson DW, Parisi JE, Crook R, Caselli RJ, Knopman DS, Petersen RC (2004) Clinical, genetic, and neuropathologic characteristics of posterior cortical atrophy. Neurology 63(7):1168–1174

    Article  CAS  PubMed  Google Scholar 

  27. Waldemar G, Dubois B, Emre M, Scheltens P, Tariska P, Rossor M (2000) Diagnosis and management of Alzheimer’s disease and other disorders associated with dementia. The role of neurologists in Europe. European Federation of Neurological Societies. Eur J Neurol 7(2):133–144

    Article  CAS  PubMed  Google Scholar 

  28. Knopman DS, DeKosky ST, Cummings JL, Chui H, Corey-Bloom J, Relkin N, Small GW, Miller B, Stevens JC (2001) Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56(9):1143–1153

    Article  CAS  PubMed  Google Scholar 

  29. Rossor MN, Fox NC, Mummery CJ, Schott JM, Warren JD (2010) The diagnosis of young-onset dementia. Lancet Neurol 9(8):793–806. doi:10.1016/s1474-4422(10)70159-9

    Article  PubMed Central  PubMed  Google Scholar 

  30. Paterson RW, Toombs J, Slattery CF, Schott JM, Zetterberg H (2014) Biomarker modelling of early molecular changes in Alzheimer’s disease. Mol Diagn Ther 18(2):213–227. doi:10.1007/s40291-013-0069-9

    Article  CAS  PubMed  Google Scholar 

  31. Birks J (2006) Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev. doi:10.1002/14651858.CD005593

    Google Scholar 

  32. Skillback T, Farahmand B, Bartlett JW, Rosen C, Mattsson N, Nagga K, Kilander L, Religa D, Wimo A, Winblad B, Rosengren L, Schott JM, Blennow K, Eriksdotter M, Zetterberg H (2014) CSF neurofilament light differs in neurodegenerative diseases and predicts severity and survival. Neurology 83(21):1945–1953. doi:10.1212/WNL.0000000000001015

    Article  PubMed  Google Scholar 

  33. Scherling CS, Hall T, Berisha F, Klepac K, Karydas A, Coppola G, Kramer JH, Rabinovici G, Ahlijanian M, Miller BL, Seeley W, Grinberg LT, Rosen H, Meredith J Jr, Boxer AL (2014) Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration. Ann Neurol 75(1):116–126. doi:10.1002/ana.24052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ossenkoppele R, Mattsson N, Teunissen CE, Barkhof F, Pijnenburg Y, Scheltens P, van der Flier WM, Rabinovici GD (2015) Cerebrospinal fluid biomarkers and cerebral atrophy in distinct clinical variants of probable Alzheimer’s disease. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2015.04.011

    PubMed Central  PubMed  Google Scholar 

  35. Seguin J, Formaglio M, Perret-Liaudet A, Quadrio I, Tholance Y, Rouaud O, Thomas-Anterion C, Croisile B, Mollion H, Moreaud O, Salzmann M, Dorey A, Bataillard M, Coste MH, Vighetto A, Krolak-Salmon P (2011) CSF biomarkers in posterior cortical atrophy. Neurology 76(21):1782–1788. doi:10.1212/WNL.0b013e31821ccc98

    Article  CAS  PubMed  Google Scholar 

  36. de Souza LC, Corlier F, Habert MO, Uspenskaya O, Maroy R, Lamari F, Chupin M, Lehericy S, Colliot O, Hahn-Barma V, Samri D, Dubois B, Bottlaender M, Sarazin M (2011) Similar amyloid-beta burden in posterior cortical atrophy and Alzheimer’s disease. Brain 134(Pt 7):2036–2043. doi:10.1093/brain/awr130

    Article  PubMed  Google Scholar 

  37. Coppi E, Ferrari L, Santangelo R, Caso F, Pinto P, Passerini G, Comi G, Magnani G (2014) Further evidence about the crucial role of CSF biomarkers in diagnosis of posterior cortical atrophy. Neurological Sci 35(5):785–787. doi:10.1007/s10072-014-1644-5

    Article  CAS  Google Scholar 

  38. Baumann TP, Duyar H, Sollberger M, Kuhle J, Regeniter A, Gomez-Mancilla B, Schmidtke K, Monsch AU (2010) CSF-tau and CSF-Abeta(1-42) in posterior cortical atrophy. Dement Geriatr Cogn Disord 29(6):530–533. doi:10.1159/000314679

    Article  CAS  PubMed  Google Scholar 

  39. Formaglio M, Costes N, Seguin J, Tholance Y, Le Bars D, Roullet-Solignac I, Mercier B, Krolak-Salmon P, Vighetto A (2011) In vivo demonstration of amyloid burden in posterior cortical atrophy: a case series with PET and CSF findings. J Neurol 258(10):1841–1851. doi:10.1007/s00415-011-6030-0

    Article  PubMed  Google Scholar 

  40. Beaufils E, Dufour-Rainfray D, Hommet C, Brault F, Cottier JP, Ribeiro MJ, Mondon K, Guilloteau D (2013) Confirmation of the amyloidogenic process in posterior cortical atrophy: value of the Abeta42/Abeta40 ratio. J Alzheimer’s Dis 33(3):775–780. doi:10.3233/JAD-2012-121267

    CAS  Google Scholar 

  41. Teng E, Yamasaki TR, Tran M, Hsiao JJ, Sultzer DL, Mendez MF (2014) Cerebrospinal fluid biomarkers in clinical subtypes of early-onset Alzheimer’s disease. Dement Geriatr Cogn Disord 37(5–6):307–314. doi:10.1159/000355555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Hampel H, Blennow K, Shaw LM, Hoessler YC, Zetterberg H, Trojanowski JQ (2010) Total and phosphorylated tau protein as biological markers of Alzheimer’s disease. Exp Gerontol 45(1):30–40. doi:10.1016/j.exger.2009.10.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Riemenschneider M, Wagenpfeil S, Vanderstichele H, Otto M, Wiltfang J, Kretzschmar H, Vanmechelen E, Forstl H, Kurz A (2003) Phospho-tau/total tau ratio in cerebrospinal fluid discriminates Creutzfeldt-Jakob disease from other dementias. Mol Psychiatry 8(3):343–347. doi:10.1038/sj.mp.4001220

    Article  CAS  PubMed  Google Scholar 

  44. Tapiola T, Overmyer M, Lehtovirta M, Helisalmi S, Ramberg J, Alafuzoff I, Riekkinen P Sr, Soininen H (1997) The level of cerebrospinal fluid tau correlates with neurofibrillary tangles in Alzheimer’s disease. NeuroReport 8(18):3961–3963

    Article  CAS  PubMed  Google Scholar 

  45. Rosenbloom MH, Alkalay A, Agarwal N, Baker SL, O’Neil JP, Janabi M, Yen IV, Growdon M, Jang J, Madison C, Mormino EC, Rosen HJ, Gorno-Tempini ML, Weiner MW, Miller BL, Jagust WJ, Rabinovici GD (2011) Distinct clinical and metabolic deficits in PCA and AD are not related to amyloid distribution. Neurology 76(21):1789–1796. doi:10.1212/WNL.0b013e31821cccad

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Leyton CE, Villemagne VL, Savage S, Pike KE, Ballard KJ, Piguet O, Burrell JR, Rowe CC, Hodges JR (2011) Subtypes of progressive aphasia: application of the International Consensus Criteria and validation using beta-amyloid imaging. Brain 134(Pt 10):3030–3043. doi:10.1093/brain/awr216

    Article  PubMed  Google Scholar 

  47. Levine DN, Lee JM, Fisher CM (1993) The visual variant of Alzheimer’s disease: a clinicopathologic case study. Neurology 43(2):305–313

    Article  CAS  PubMed  Google Scholar 

  48. Galton CJ, Patterson K, Xuereb JH, Hodges JR (2000) Atypical and typical presentations of Alzheimer’s disease: a clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain 123(Pt 3):484–498

    Article  PubMed  Google Scholar 

  49. Kanne SM, Balota DA, Storandt M, McKeel DW Jr, Morris JC (1998) Relating anatomy to function in Alzheimer’s disease: neuropsychological profiles predict regional neuropathology 5 years later. Neurology 50(4):979–985

    Article  CAS  PubMed  Google Scholar 

  50. Whitwell JL, Petersen RC, Negash S, Weigand SD, Kantarci K, Ivnik RJ, Knopman DS, Boeve BF, Smith GE, Jack CR Jr (2007) Patterns of atrophy differ among specific subtypes of mild cognitive impairment. Arch Neurol 64(8):1130–1138. doi:10.1001/archneur.64.8.1130

    Article  PubMed Central  PubMed  Google Scholar 

  51. Verbeek MM, Kremer BP, Rikkert MO, Van Domburg PH, Skehan ME, Greenberg SM (2009) Cerebrospinal fluid amyloid beta(40) is decreased in cerebral amyloid angiopathy. Ann Neurol 66(2):245–249. doi:10.1002/ana.21694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Wiltfang J, Esselmann H, Bibl M, Smirnov A, Otto M, Paul S, Schmidt B, Klafki HW, Maler M, Dyrks T, Bienert M, Beyermann M, Ruther E, Kornhuber J (2002) Highly conserved and disease-specific patterns of carboxyterminally truncated Abeta peptides 1-37/38/39 in addition to 1-40/42 in Alzheimer’s disease and in patients with chronic neuroinflammation. J Neurochem 81(3):481–496

    Article  CAS  PubMed  Google Scholar 

  53. Welge V, Fiege O, Lewczuk P, Mollenhauer B, Esselmann H, Klafki HW, Wolf S, Trenkwalder C, Otto M, Kornhuber J, Wiltfang J, Bibl M (2009) Combined CSF tau, p-tau181 and amyloid-beta 38/40/42 for diagnosing Alzheimer’s disease. J Neural Transm 116(2):203–212. doi:10.1007/s00702-008-0177-6

    Article  CAS  PubMed  Google Scholar 

  54. Hansson O, Buchhave P, Zetterberg H, Blennow K, Minthon L, Warkentin S (2009) Combined rCBF and CSF biomarkers predict progression from mild cognitive impairment to Alzheimer’s disease. Neurobiol Aging 30(2):165–173. doi:10.1016/j.neurobiolaging.2007.06.009

    Article  CAS  PubMed  Google Scholar 

  55. Struyfs H, Molinuevo JL, Martin JJ, De Deyn PP, Engelborghs S (2014) Validation of the AD-CSF-index in autopsy-confirmed Alzheimer’s disease patients and healthy controls. J Alzheimer’s Dis 41(3):903–909. doi:10.3233/JAD-131085

    CAS  Google Scholar 

  56. Fukuyama R, Mizuno T, Mori S, Nakajima K, Fushiki S, Yanagisawa K (2000) Age-dependent change in the levels of Abeta40 and Abeta42 in cerebrospinal fluid from control subjects, and a decrease in the ratio of Abeta42 to Abeta40 level in cerebrospinal fluid from Alzheimer’s disease patients. Eur Neurol 43(3):155–160. doi:10.1159/000008156

    Article  CAS  PubMed  Google Scholar 

  57. Wiltfang J, Esselmann H, Bibl M, Hull M, Hampel H, Kessler H, Frolich L, Schroder J, Peters O, Jessen F, Luckhaus C, Perneczky R, Jahn H, Fiszer M, Maler JM, Zimmermann R, Bruckmoser R, Kornhuber J, Lewczuk P (2007) Amyloid beta peptide ratio 42/40 but not A beta 42 correlates with phospho-Tau in patients with low- and high-CSF A beta 40 load. J Neurochem 101(4):1053–1059. doi:10.1111/j.1471-4159.2006.04404.x

    Article  CAS  PubMed  Google Scholar 

  58. Storey E, Slavin MJ, Kinsella GJ (2002) Patterns of cognitive impairment in Alzheimer’s disease: assessment and differential diagnosis. Front Biosci 7:e155–184

    Article  PubMed  Google Scholar 

  59. Aries MJ, Le Bastard N, Debruyne H, Van Buggenhout M, Nagels G, De Deyn PP, Engelborghs S (2010) Relation between frontal lobe symptoms and dementia severity within and across diagnostic dementia categories. Int J Geriatr Psychiatry 25(11):1186–1195. doi:10.1002/gps.2481

    Article  PubMed  Google Scholar 

  60. Taylor KI, Probst A, Miserez AR, Monsch AU, Tolnay M (2008) Clinical course of neuropathologically confirmed frontal-variant Alzheimer’s disease. Nat Clin Pract Neurol 4(4):226–232. doi:10.1038/ncpneuro0746

    PubMed  Google Scholar 

  61. Woodward M, Jacova C, Black SE, Kertesz A, Mackenzie IR, Feldman H, group Ai (2010) Differentiating the frontal variant of Alzheimer’s disease. Int J Geriatr Psychiatry 25(7):732–738. doi:10.1002/gps.2415

    Article  PubMed  Google Scholar 

  62. Johnson JK, Head E, Kim R, Starr A, Cotman CW (1999) Clinical and pathological evidence for a frontal variant of Alzheimer disease. Arch Neurol 56(10):1233–1239

    Article  CAS  PubMed  Google Scholar 

  63. Schott JM, Revesz T (2013) Inflammation in Alzheimer’s disease: insights from immunotherapy. Brain 136(Pt 9):2654–2656. doi:10.1093/brain/awt231

    Article  PubMed  Google Scholar 

  64. Rosen C, Hansson O, Blennow K, Zetterberg H (2013) Fluid biomarkers in Alzheimer’s disease—current concepts. Mol Neurodegener 8:20. doi:10.1186/1750-1326-8-20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of our patients and their families, the Leonard Wolfson Experimental Neurology Centre, Alzheimer’s Research UK and Iceland Foods Ltd. This work was supported by the National Institute for Health Research Queen Square Dementia Biomedical Research Unit, University College London Hospitals Biomedical Research Centre and the Swedish Research Council. HZ is a Wallenberg Academy Fellow. SC is supported by an Alzheimer’s Research UK Senior Research Fellowship and ESRC/NIHR grant (ES/K006711/1). The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Schott.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

H. Zetterberg and J. M. Schott are Joint Senior Authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Supplementary material 2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paterson, R.W., Toombs, J., Slattery, C.F. et al. Dissecting IWG-2 typical and atypical Alzheimer’s disease: insights from cerebrospinal fluid analysis. J Neurol 262, 2722–2730 (2015). https://doi.org/10.1007/s00415-015-7904-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-015-7904-3

Keywords

Navigation