Skip to main content
Log in

Biomarker Modelling of Early Molecular Changes in Alzheimer’s Disease

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

The preclinical phase of Alzheimer’s disease (AD) occurs years, possibly decades, before the onset of clinical symptoms. Being able to detect the very earliest stages of AD is critical to improving understanding of AD biology, and identifying individuals at greatest risk of developing clinical symptoms with a view to treating AD pathophysiology before irreversible neurodegeneration occurs. Studies of dominantly inherited AD families and longitudinal studies of sporadic AD have contributed to knowledge of the earliest AD biomarkers. Here we appraise this evidence before reviewing novel, particularly fluid, biomarkers that may provide insights into AD pathogenesis and relate these to existing hypothetical disease models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sperling RA, Karlawish J, Johnson KA. Preclinical Alzheimer disease—the challenges ahead. Nat Rev Neurol. 2013;9(1):54–8. doi:10.1038/nrneurol.2012.241.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Braak H, Braak E. Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol Scand Suppl. 1996;165:3–12.

    CAS  PubMed  Google Scholar 

  3. Akiyama H, Arai T, Kondo H, Tanno E, Haga C, Ikeda K. Cell mediators of inflammation in the Alzheimer disease brain. Alzheimer Dis Assoc Disord. 2000;14(Suppl 1):S47–53.

    CAS  PubMed  Google Scholar 

  4. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6. doi:10.1126/science.1072994.

    CAS  PubMed  Google Scholar 

  5. Perrin RJ, Fagan AM, Holtzman DM. Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature. 2009;461(7266):916–22. doi:10.1038/nature08538.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Zetterberg H, Blennow K. Cerebrospinal fluid biomarkers for Alzheimer’s disease: more to come? J Alzheimers Dis. 2013;33(Suppl 1):S361–9. doi:10.3233/JAD-2012-129035.

    PubMed  Google Scholar 

  7. Sperling RA, Jack CR Jr, Aisen PS. Testing the right target and right drug at the right stage. Sci Transl Med. 2011;3(111):111cm33. doi:10.1126/scitranslmed.3002609.

    PubMed Central  PubMed  Google Scholar 

  8. Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol. 2006;5(3):228–34. doi:10.1016/S1474-4422(06)70355-6.

    CAS  PubMed  Google Scholar 

  9. Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, et al. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol. 2009;65(4):403–13. doi:10.1002/ana.21610.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Visser PJ, Verhey F, Knol DL, Scheltens P, Wahlund LO, Freund-Levi Y, et al. Prevalence and prognostic value of CSF markers of Alzheimer’s disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective cohort study. Lancet Neurol. 2009;8(7):619–27. doi:10.1016/S1474-4422(09)70139-5.

    PubMed  Google Scholar 

  11. Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson M, et al. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA. 2009;302(4):385–93. doi:10.1001/jama.2009.1064.

    CAS  PubMed  Google Scholar 

  12. Weigand SD, Vemuri P, Wiste HJ, Senjem ML, Pankratz VS, Aisen PS, et al. Transforming cerebrospinal fluid Abeta42 measures into calculated Pittsburgh Compound B units of brain Abeta amyloid. Alzheimers Dement. 2011;7(2):133–41. doi:10.1016/j.jalz.2010.08.230.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Olsson A, Vanderstichele H, Andreasen N, De Meyer G, Wallin A, Holmberg B, et al. Simultaneous measurement of beta-amyloid(1-42), total tau, and phosphorylated tau (Thr181) in cerebrospinal fluid by the xMAP technology. Clin Chem. 2005;51(2):336–45. doi:10.1373/clinchem.2004.039347.

    CAS  PubMed  Google Scholar 

  14. Perret-Liaudet A, Pelpel M, Tholance Y, Dumont B, Vanderstichele H, Zorzi W, et al. Cerebrospinal fluid collection tubes: a critical issue for Alzheimer disease diagnosis. Clin Chem. 2012;58(4):787–9. doi:10.1373/clinchem.2011.178368.

    CAS  PubMed  Google Scholar 

  15. Toombs J, Paterson RW, Lunn MP, Nicholas JM, Fox NC, Chapman MD et al. Identification of an important potential confound in CSF AD studies: aliquot volume. Clin Chem Lab Med. 2013:1–7. doi:10.1515/cclm-2013-0293.

  16. Bateman RJ, Wen G, Morris JC, Holtzman DM. Fluctuations of CSF amyloid-beta levels: implications for a diagnostic and therapeutic biomarker. Neurology. 2007;68(9):666–9. doi:10.1212/01.wnl.0000256043.50901.e3.

    CAS  PubMed  Google Scholar 

  17. Schoonenboom NS, Mulder C, Vanderstichele H, Van Elk EJ, Kok A, Van Kamp GJ, et al. Effects of processing and storage conditions on amyloid beta (1-42) and tau concentrations in cerebrospinal fluid: implications for use in clinical practice. Clin Chem. 2005;51(1):189–95. doi:10.1373/clinchem.2004.039735.

    CAS  PubMed  Google Scholar 

  18. Bjerke M, Portelius E, Minthon L, Wallin A, Anckarsater H, Anckarsater R et al. Confounding factors influencing amyloid beta concentration in cerebrospinal fluid. Int J Alzheimers Dis. 2010;2010. doi:10.4061/2010/986310.

  19. Mattsson N, Andreasson U, Persson S, Arai H, Batish SD, Bernardini S, et al. The Alzheimer’s Association external quality control program for cerebrospinal fluid biomarkers. Alzheimers Dement. 2011;7(4):386.e6–395.e6. doi:10.1016/j.jalz.2011.05.2243.

    Google Scholar 

  20. Mattsson N, Andreasson U, Persson S, Carrillo MC, Collins S, Chalbot S, et al. CSF biomarker variability in the Alzheimer’s Association quality control program. Alzheimers Dement. 2013;9(3):251–61. doi:10.1016/j.jalz.2013.01.010.

    PubMed  Google Scholar 

  21. Carrillo MC, Blennow K, Soares H, Lewczuk P, Mattsson N, Oberoi P, et al. Global standardization measurement of cerebral spinal fluid for Alzheimer’s disease: an update from the Alzheimer’s Association Global Biomarkers Consortium. Alzheimers Dement. 2012. doi:10.1016/j.jalz.2012.11.003.

    PubMed Central  Google Scholar 

  22. Bartlett JW, Frost C, Mattsson N, Skillback T, Blennow K, Zetterberg H, et al. Determining cut-points for Alzheimer’s disease biomarkers: statistical issues, methods and challenges. Biomark Med. 2012;6(4):391–400. doi:10.2217/bmm.12.49.

    CAS  PubMed  Google Scholar 

  23. Fox NC, Scahill RI, Crum WR, Rossor MN. Correlation between rates of brain atrophy and cognitive decline in AD. Neurology. 1999;52(8):1687–9.

    CAS  PubMed  Google Scholar 

  24. Kaye JA, Swihart T, Howieson D, Dame A, Moore MM, Karnos T, et al. Volume loss of the hippocampus and temporal lobe in healthy elderly persons destined to develop dementia. Neurology. 1997;48(5):1297–304.

    CAS  PubMed  Google Scholar 

  25. Fox NC, Warrington EK, Rossor MN. Serial magnetic resonance imaging of cerebral atrophy in preclinical Alzheimer’s disease. Lancet. 1999;353(9170):2125.

    CAS  PubMed  Google Scholar 

  26. Jack CR Jr, Shiung MM, Weigand SD, O’Brien PC, Gunter JL, Boeve BF, et al. Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology. 2005;65(8):1227–31.

    PubMed Central  PubMed  Google Scholar 

  27. Fox NC, Schott JM. Imaging cerebral atrophy: normal ageing to Alzheimer’s disease. Lancet. 2004;363(9406):392–4. doi:10.1016/S0140-6736(04)15441-X.

    PubMed  Google Scholar 

  28. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9(1):119–28. doi:10.1016/S1474-4422(09)70299-6.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Mosconi L, Berti V, Glodzik L, Pupi A, De Santi S, de Leon MJ. Pre-clinical detection of Alzheimer’s disease using FDG-PET, with or without amyloid imaging. J Alzheimers Dis. 2010;20(3):843–54. doi:10.3233/JAD-2010-091504.

    PubMed Central  PubMed  Google Scholar 

  30. Rowe CC, Villemagne VL. Brain amyloid imaging. J Nucl Med Technol. 2013;41(1):11–8. doi:10.2967/jnumed.110.076315.

    PubMed  Google Scholar 

  31. Leinonen V, Koivisto AM, Savolainen S, Rummukainen J, Tamminen JN, Tillgren T, et al. Amyloid and tau proteins in cortical brain biopsy and Alzheimer’s disease. Ann Neurol. 2010;68(4):446–53. doi:10.1002/ana.22100.

    CAS  PubMed  Google Scholar 

  32. Seppala TT, Nerg O, Koivisto AM, Rummukainen J, Puli L, Zetterberg H, et al. CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings. Neurology. 2012;78(20):1568–75. doi:10.1212/WNL.0b013e3182563bd0.

    CAS  PubMed  Google Scholar 

  33. Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305(3):275–83. doi:10.1001/jama.2010.2008.

    CAS  PubMed  Google Scholar 

  34. Ryan NS, Rossor MN. Correlating familial Alzheimer’s disease gene mutations with clinical phenotype. Biomark Med. 2010;4(1):99–112.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Fox NC, Warrington EK, Freeborough PA, Hartikainen P, Kennedy AM, Stevens JM, et al. Presymptomatic hippocampal atrophy in Alzheimer’s disease. A longitudinal MRI study. Brain. 1996;119(Pt 6):2001–7.

    PubMed  Google Scholar 

  36. Schott JM, Fox NC, Frost C, Scahill RI, Janssen JC, Chan D, et al. Assessing the onset of structural change in familial Alzheimer’s disease. Ann Neurol. 2003;53(2):181–8. doi:10.1002/ana.10424.

    PubMed  Google Scholar 

  37. Ridha BH, Barnes J, Bartlett JW, Godbolt A, Pepple T, Rossor MN, et al. Tracking atrophy progression in familial Alzheimer’s disease: a serial MRI study. Lancet Neurol. 2006;5(10):828–34. doi:10.1016/S1474-4422(06)70550-6.

    PubMed  Google Scholar 

  38. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367(9):795–804. doi:10.1056/NEJMoa1202753.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Knight WD, Okello AA, Ryan NS, Turkheimer FE, Rodriguez Martinez de Llano S, Edison P, et al. Carbon-11-Pittsburgh compound B positron emission tomography imaging of amyloid deposition in presenilin 1 mutation carriers. Brain. 2011;134(Pt 1):293–300. doi:10.1093/brain/awq310.

    PubMed  Google Scholar 

  40. Klunk WE, Price JC, Mathis CA, Tsopelas ND, Lopresti BJ, Ziolko SK, et al. Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. J Neurosci. 2007;27(23):6174–84. doi:10.1523/JNEUROSCI.0730-07.2007.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Potter R, Patterson BW, Elbert DL, Ovod V, Kasten T, Sigurdson W, et al. Increased in vivo amyloid-beta42 production, exchange, and loss in presenilin mutation carriers. Sci Transl Med. 2013;5(189):189ra77. doi:10.1126/scitranslmed.3005615.

    PubMed  Google Scholar 

  42. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, et al. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science. 2010;330(6012):1774. doi:10.1126/science.1197623.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Reiman EM, Quiroz YT, Fleisher AS, Chen K, Velez-Pardo C, Jimenez-Del-Rio M, et al. Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer’s disease in the presenilin 1 E280A kindred: a case-control study. Lancet Neurol. 2012;11(12):1048–56. doi:10.1016/S1474-4422(12)70228-4.

    CAS  PubMed  Google Scholar 

  44. Schott JM, Bartlett JW, Fox NC, Barnes J. Increased brain atrophy rates in cognitively normal older adults with low cerebrospinal fluid Abeta1-42. Ann Neurol. 2010;68(6):825–34. doi:10.1002/ana.22315.

    CAS  PubMed  Google Scholar 

  45. Rowe CC, Ellis KA, Rimajova M, Bourgeat P, Pike KE, Jones G, et al. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging. 2010;31(8):1275–83. doi:10.1016/j.neurobiolaging.2010.04.007.

    PubMed  Google Scholar 

  46. Andrews KA, Modat M, Macdonald KE, Yeatman T, Cardoso MJ, Leung KK, et al. Atrophy rates in asymptomatic amyloidosis: implications for Alzheimer prevention trials. PloS One. 2013;8(3):e58816. doi:10.1371/journal.pone.0058816.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Mormino EC, Kluth JT, Madison CM, Rabinovici GD, Baker SL, Miller BL, et al. Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects. Brain. 2009;132(Pt 5):1310–23. doi:10.1093/brain/awn320.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, et al. Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2013;12(4):357–67. doi:10.1016/S1474-4422(13)70044-9.

    CAS  PubMed  Google Scholar 

  49. Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207–16. doi:10.1016/S1474-4422(12)70291-0.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Knopman DS, Roberts RO. Healthy young hearts sharper older minds make. Ann Neurol. 2013;73(2):151–2. doi:10.1002/ana.23847.

    PubMed Central  PubMed  Google Scholar 

  51. Chetelat G. Alzheimer disease: Abeta-independent processes-rethinking preclinical AD. Nat Rev Neurol. 2013;9(3):123–4. doi:10.1038/nrneurol.2013.21.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6(8):734–46. doi:10.1016/S1474-4422(07)70178-3.

    PubMed  Google Scholar 

  53. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9. doi:10.1016/j.jalz.2011.03.005.

    PubMed Central  PubMed  Google Scholar 

  54. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9. doi:10.1016/j.jalz.2011.03.008.

    PubMed Central  PubMed  Google Scholar 

  55. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–92. doi:10.1016/j.jalz.2011.03.003.

    PubMed Central  PubMed  Google Scholar 

  56. Lam B, Masellis M, Freedman M, Stuss DT, Black SE. Clinical, imaging, and pathological heterogeneity of the Alzheimer’s disease syndrome. Alzheimers Res Ther. 2013;5(1):1. doi:10.1186/alzrt155.

    PubMed Central  PubMed  Google Scholar 

  57. Genin E, Hannequin D, Wallon D, Sleegers K, Hiltunen M, Combarros O, et al. APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol Psychiatry. 2011;16(9):903–7. doi:10.1038/mp.2011.52.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Prince JA, Zetterberg H, Andreasen N, Marcusson J, Blennow K. APOE epsilon4 allele is associated with reduced cerebrospinal fluid levels of Abeta42. Neurology. 2004;62(11):2116–8.

    CAS  PubMed  Google Scholar 

  59. Andreasson U, Lautner R, Schott JM, Mattsson N, Hansson O, Herukka SK, et al. CSF biomarkers for Alzheimer’s pathology and the effect size of APOE varepsilon4. Mol Psychiatry. 2013. doi:10.1038/mp.2013.18.

    PubMed Central  PubMed  Google Scholar 

  60. Sheline YI, Morris JC, Snyder AZ, Price JL, Yan Z, D’Angelo G, et al. APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Abeta42. J Neurosci. 2010;30(50):17035–40. doi:10.1523/JNEUROSCI.3987-10.2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Scarmeas N, Habeck CG, Stern Y, Anderson KE. APOE genotype and cerebral blood flow in healthy young individuals. JAMA. 2003;290(12):1581–2. doi:10.1001/jama.290.12.1581.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. 2011;43(5):436–41. doi:10.1038/ng.801.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368(2):117–27. doi:10.1056/NEJMoa1211851.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Fagan AM, Perrin RJ. Upcoming candidate cerebrospinal fluid biomarkers of Alzheimer’s disease. Biomark Med. 2012;6(4):455–76. doi:10.2217/bmm.12.42.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Lo JT. Functional model of biological neural networks. Cogn Neurodyn. 2010;4(4):295–313. doi:10.1007/s11571-010-9110-4.

    PubMed Central  PubMed  Google Scholar 

  66. Zhang Y, Schuff N, Du AT, Rosen HJ, Kramer JH, Gorno-Tempini ML, et al. White matter damage in frontotemporal dementia and Alzheimer’s disease measured by diffusion MRI. Brain. 2009;132(Pt 9):2579–92. doi:10.1093/brain/awp071.

    PubMed Central  PubMed  Google Scholar 

  67. Gusnard DA, Raichle ME, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci. 2001;2(10):685–94.

    CAS  PubMed  Google Scholar 

  68. Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci. 2005;25(34):7709–17. doi:10.1523/JNEUROSCI.2177-05.2005.

    CAS  PubMed  Google Scholar 

  69. Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci. 2009;29(6):1860–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Lehmann M, Koedam EL, Barnes J, Bartlett JW, Barkhof F, Wattjes MP, et al. Visual ratings of atrophy in MCI: prediction of conversion and relationship with CSF biomarkers. Neurobiol Aging. 2013;34(1):73–82. doi:10.1016/j.neurobiolaging.2012.03.010.

    PubMed  Google Scholar 

  71. Sorg C, Riedl V, Muhlau M, Calhoun VD, Eichele T, Laer L, et al. Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci USA. 2007;104(47):18760–5. doi:10.1073/pnas.0708803104.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Petrella JR, Sheldon FC, Prince SE, Calhoun VD, Doraiswamy PM. Default mode network connectivity in stable vs progressive mild cognitive impairment. Neurology. 2011;76(6):511–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici GD, et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain. 2010;133(Pt 5):1352–67. doi:10.1093/brain/awq075.

    PubMed Central  PubMed  Google Scholar 

  74. Warren JD, Rohrer JD, Schott JM, Fox NC, Hardy J, Rossor MN. Molecular nexopathies: a new paradigm of neurodegenerative disease. Trends Neurosci. 2013. doi:10.1016/j.tins.2013.06.007.

    PubMed Central  PubMed  Google Scholar 

  75. Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79(6):1094–108. doi:10.1016/j.neuron.2013.07.037.

    CAS  PubMed  Google Scholar 

  76. Zhang W, Arteaga J, Cashion DK, Chen G, Gangadharmath U, Gomez LF, et al. A highly selective and specific PET tracer for imaging of tau pathologies. J Alzheimers Dis. 2012;31(3):601–12. doi:10.3233/JAD-2012-120712.

    CAS  PubMed  Google Scholar 

  77. Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su MY, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis. 2013;34(2):457–68. doi:10.3233/JAD-122059.

    CAS  PubMed  Google Scholar 

  78. Okamura N, Furumoto S, Harada R, Tago T, Yoshikawa T, Fodero-Tavoletti M, et al. Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease. J Nucl Med. 2013;54(8):1420–7. doi:10.2967/jnumed.112.117341.

    CAS  PubMed  Google Scholar 

  79. Nalivaeva NN, Turner AJ. The amyloid precursor protein: a biochemical enigma in brain development, function and disease. FEBS Lett. 2013;587(13):2046–54. doi:10.1016/j.febslet.2013.05.010.

    CAS  PubMed  Google Scholar 

  80. Abramsson A, Kettunen P, Banote RK, Lott E, Li M, Arner A, et al. The zebrafish amyloid precursor protein-b is required for motor neuron guidance and synapse formation. Dev Biol. 2013;381(2):377–88. doi:10.1016/j.ydbio.2013.06.026.

    CAS  PubMed  Google Scholar 

  81. Octave JN, Pierrot N, Ferao Santos S, Nalivaeva NN, Turner AJ. From synaptic spines to nuclear signaling: nuclear and synaptic actions of the amyloid precursor protein. J Neurochem. 2013;126(2):183–90. doi:10.1111/jnc.12239.

    CAS  PubMed  Google Scholar 

  82. Lei P, Ayton S, Finkelstein DI, Spoerri L, Ciccotosto GD, Wright DK, et al. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med. 2012;18(2):291–5. doi:10.1038/nm.2613.

    CAS  PubMed  Google Scholar 

  83. Borroni B, Pilotto A, Bonvicini C, Archetti S, Alberici A, Lupi A, et al. Atypical presentation of a novel Presenilin 1 R377W mutation: sporadic, late-onset Alzheimer disease with epilepsy and frontotemporal atrophy. Neurol Sci. 2012;33(2):375–8. doi:10.1007/s10072-011-0714-1.

    PubMed  Google Scholar 

  84. Zainaghi IA, Talib LL, Diniz BS, Gattaz WF, Forlenza OV. Reduced platelet amyloid precursor protein ratio (APP ratio) predicts conversion from mild cognitive impairment to Alzheimer’s disease. J Neural Transm. 2012;119(7):815–9. doi:10.1007/s00702-012-0807-x.

    CAS  PubMed  Google Scholar 

  85. Srisawat C, Junnu S, Peerapittayamongkol C, Futrakul A, Soi-ampornkul R, Senanarong V, et al. The platelet amyloid precursor protein ratio as a diagnostic marker for Alzheimer’s disease in Thai patients. J Clin Neurosci. 2013;20(5):644–8. doi:10.1016/j.jocn.2012.06.008.

    CAS  PubMed  Google Scholar 

  86. Jelic V, Hagman G, Yamamoto NG, Teranishi Y, Nishimura T, Winblad B, et al. Abnormal platelet amyloid-beta protein precursor (AbetaPP) metabolism in Alzheimer’s disease: identification and characterization of a new AbetaPP isoform as potential biomarker. J Alzheimers Dis. 2013;35(2):285–95. doi:10.3233/JAD-122122.

    CAS  PubMed  Google Scholar 

  87. Grimmer T, Wutz C, Drzezga A, Forster S, Forstl H, Ortner M, et al. The usefulness of amyloid imaging in predicting the clinical outcome after two years in subjects with mild cognitive impairment. Curr Alzheimer Res. 2013;10(1):82–5.

    CAS  PubMed  Google Scholar 

  88. Mattsson N, Ruetschi U, Pijnenburg YA, Blankenstein MA, Podust VN, Li S, et al. Novel cerebrospinal fluid biomarkers of axonal degeneration in frontotemporal dementia. Mol Med Rep. 2008;1(5):757–61. doi:10.3892/mmr_00000025.

    CAS  PubMed  Google Scholar 

  89. Tesco G, Koh YH, Kang EL, Cameron AN, Das S, Sena-Esteves M, et al. Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity. Neuron. 2007;54(5):721–37. doi:10.1016/j.neuron.2007.05.012.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Holsinger RM, McLean CA, Collins SJ, Masters CL, Evin G. Increased beta-secretase activity in cerebrospinal fluid of Alzheimer’s disease subjects. Ann Neurol. 2004;55(6):898–9. doi:10.1002/ana.20144.

    PubMed  Google Scholar 

  91. Barao S, Zhou L, Adamczuk K, Vanhoutvin T, Leuven F, Demedts D, et al. BACE1 levels correlate with phospho-tau levels in human cerebrospinal fluid. Curr Alzheimer Res. 2013;10(7):671–8.

    CAS  PubMed  Google Scholar 

  92. Mattsson N, Rajendran L, Zetterberg H, Gustavsson M, Andreasson U, Olsson M, et al. BACE1 inhibition induces a specific cerebrospinal fluid beta-amyloid pattern that identifies drug effects in the central nervous system. PloS One. 2012;7(2):e31084. doi:10.1371/journal.pone.0031084.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Pera M, Alcolea D, Sanchez-Valle R, Guardia-Laguarta C, Colom-Cadena M, Badiola N, et al. Distinct patterns of APP processing in the CNS in autosomal-dominant and sporadic Alzheimer disease. Acta Neuropathol. 2013;125(2):201–13. doi:10.1007/s00401-012-1062-9.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Bibl M, Esselmann H, Wiltfang J. Neurochemical biomarkers in Alzheimer’s disease and related disorders. Ther Adv Neurol Disord. 2012;5(6):335–48. doi:10.1177/1756285612455367.

    PubMed Central  PubMed  Google Scholar 

  95. Sjögren M, Davidsson P, Gottfries J, Vanderstichele H, Edman A, Vanmechelen E, et al. The cerebrospinal fluid levels of tau, growth-associated protein-43 and soluble amyloid precursor protein correlate in Alzheimer’s disease, reflecting a common pathophysiological process. Dement Geriatr Cogn Disord. 2001;12(4):257–64. doi:10.1159/000051268.

    PubMed  Google Scholar 

  96. Lewczuk P, Kornhuber J, Vanmechelen E, Peters O, Heuser I, Maier W, et al. Amyloid beta peptides in plasma in early diagnosis of Alzheimer’s disease: a multicenter study with multiplexing. Exp Neurol. 2010;223(2):366–70. doi:10.1016/j.expneurol.2009.07.024.

    CAS  PubMed  Google Scholar 

  97. Rosen C, Andreasson U, Mattsson N, Marcusson J, Minthon L, Andreasen N, et al. Cerebrospinal fluid profiles of amyloid beta-related biomarkers in Alzheimer’s disease. Neuromol Med. 2012;14(1):65–73. doi:10.1007/s12017-012-8171-4.

    CAS  Google Scholar 

  98. Brinkmalm G, Brinkmalm A, Bourgeois P, Persson R, Hansson O, Portelius E, et al. Soluble amyloid precursor protein alpha and beta in CSF in Alzheimer’s disease. Brain Res. 2013;1513:117–26. doi:10.1016/j.brainres.2013.03.019.

    CAS  PubMed  Google Scholar 

  99. Alexopoulos P, Guo LH, Jiang M, Bujo H, Grimmer T, Forster S, et al. Amyloid cascade and tau pathology cerebrospinal fluid markers in mild cognitive impairment with regards to Alzheimer’s disease cerebral metabolic signature. J Alzheimers Dis. 2013;36(2):401–8. doi:10.3233/JAD-122329.

    CAS  PubMed  Google Scholar 

  100. Perneczky R, Guo LH, Kagerbauer SM, Werle L, Kurz A, Martin J, et al. Soluble amyloid precursor protein beta as blood-based biomarker of Alzheimer’s disease. Transl Psychiatry. 2013;3:e227. doi:10.1038/tp.2013.11.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Wu G, Sankaranarayanan S, Wong J, Tugusheva K, Michener MS, Shi X, et al. Characterization of plasma beta-secretase (BACE1) activity and soluble amyloid precursor proteins as potential biomarkers for Alzheimer’s disease. J Neurosci Res. 2012;90(12):2247–58. doi:10.1002/jnr.23122.

    CAS  PubMed  Google Scholar 

  102. Walsh ST, Kossiakoff AA. Crystal structure and site 1 binding energetics of human placental lactogen. J Mol Biol. 2006;358(3):773–84. doi:10.1016/j.jmb.2006.02.038.

    CAS  PubMed  Google Scholar 

  103. Young-Collier KJ, McArdle M, Bennett JP. The dying of the light: mitochondrial failure in Alzheimer’s disease. J Alzheimers Dis. 2012;28(4):771–81. doi:10.3233/JAD-2011-111487.

    CAS  PubMed  Google Scholar 

  104. Barghorn S, Nimmrich V, Striebinger A, Krantz C, Keller P, Janson B, et al. Globular amyloid beta-peptide oligomer—a homogenous and stable neuropathological protein in Alzheimer’s disease. J Neurochem. 2005;95(3):834–47. doi:10.1111/j.1471-4159.2005.03407.x.

    CAS  PubMed  Google Scholar 

  105. Esparza TJ, Zhao H, Cirrito JR, Cairns NJ, Bateman RJ, Holtzman DM, et al. Amyloid-beta oligomerization in Alzheimer dementia versus high-pathology controls. Ann Neurol. 2013;73(1):104–19. doi:10.1002/ana.23748.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Stenh C, Englund H, Lord A, Johansson AS, Almeida CG, Gellerfors P, et al. Amyloid-beta oligomers are inefficiently measured by enzyme-linked immunosorbent assay. Ann Neurol. 2005;58(1):147–50. doi:10.1002/ana.20524.

    CAS  PubMed  Google Scholar 

  107. Georganopoulou DG, Chang L, Nam JM, Thaxton CS, Mufson EJ, Klein WL, et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci USA. 2005;102(7):2273–6. doi:10.1073/pnas.0409336102.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Santos AN, Torkler S, Nowak D, Schlittig C, Goerdes M, Lauber T, et al. Detection of amyloid-beta oligomers in human cerebrospinal fluid by flow cytometry and fluorescence resonance energy transfer. J Alzheimers Dis. 2007;11(1):117–25.

    CAS  PubMed  Google Scholar 

  109. Gatson JW, Warren V, Abdelfattah K, Wolf S, Hynan LS, Moore C, et al. Detection of beta-amyloid oligomers as a predictor of neurological outcome after brain injury. J Neurosurg. 2013;118(6):1336–42. doi:10.3171/2013.2.JNS121771.

    CAS  PubMed  Google Scholar 

  110. Nimmrich V, Grimm C, Draguhn A, Barghorn S, Lehmann A, Schoemaker H, et al. Amyloid beta oligomers (A beta(1-42) globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents. J Neurosci. 2008;28(4):788–97. doi:10.1523/JNEUROSCI.4771-07.2008.

    CAS  PubMed  Google Scholar 

  111. Holtta M, Hansson O, Andreasson U, Hertze J, Minthon L, Nagga K, et al. Evaluating amyloid-beta oligomers in cerebrospinal fluid as a biomarker for Alzheimer’s disease. PloS One. 2013;8(6):e66381. doi:10.1371/journal.pone.0066381.

    PubMed Central  PubMed  Google Scholar 

  112. Iwatsubo T, Mann DM, Odaka A, Suzuki N, Ihara Y. Amyloid beta protein (A beta) deposition: A beta 42(43) precedes A beta 40 in Down syndrome. Ann Neurol. 1995;37(3):294–9. doi:10.1002/ana.410370305.

    CAS  PubMed  Google Scholar 

  113. Fei M, Jianghua W, Rujuan M, Wei Z, Qian W. The relationship of plasma Abeta levels to dementia in aging individuals with mild cognitive impairment. J Neurol Sci. 2011;305(1–2):92–6. doi:10.1016/j.jns.2011.03.005.

    PubMed  Google Scholar 

  114. Seppala TT, Herukka SK, Hanninen T, Tervo S, Hallikainen M, Soininen H, et al. Plasma Abeta42 and Abeta40 as markers of cognitive change in follow-up: a prospective, longitudinal, population-based cohort study. J Neurol Neurosurg Psychiatry. 2010;81(10):1123–7. doi:10.1136/jnnp.2010.205757.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Graff-Radford NR, Crook JE, Lucas J, Boeve BF, Knopman DS, Ivnik RJ, et al. Association of low plasma Abeta42/Abeta40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Arch Neurol. 2007;64(3):354–62. doi:10.1001/archneur.64.3.354.

    PubMed  Google Scholar 

  116. Figurski MJ, Waligorska T, Toledo J, Vanderstichele H, Korecka M, Lee VM, et al. Improved protocol for measurement of plasma beta-amyloid in longitudinal evaluation of Alzheimer’s Disease Neuroimaging Initiative study patients. Alzheimers Dement. 2012;8(4):250–60. doi:10.1016/j.jalz.2012.01.001.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Schott JM, Revesz T. Inflammation in Alzheimer’s disease: insights from immunotherapy. Brain. 2013;136(Pt 9):2654–6. doi:10.1093/brain/awt231.

    PubMed  Google Scholar 

  118. Colasanti T, Barbati C, Rosano G, Malorni W, Ortona E. Autoantibodies in patients with Alzheimer’s disease: pathogenetic role and potential use as biomarkers of disease progression. Autoimmun Rev. 2010;9(12):807–11. doi:10.1016/j.autrev.2010.07.008.

    CAS  PubMed  Google Scholar 

  119. Nath A, Hall E, Tuzova M, Dobbs M, Jons M, Anderson C, et al. Autoantibodies to amyloid beta-peptide (Abeta) are increased in Alzheimer’s disease patients and Abeta antibodies can enhance Abeta neurotoxicity: implications for disease pathogenesis and vaccine development. Neuromol Med. 2003;3(1):29–39.

    CAS  Google Scholar 

  120. Du Y, Dodel R, Hampel H, Buerger K, Lin S, Eastwood B, et al. Reduced levels of amyloid beta-peptide antibody in Alzheimer disease. Neurology. 2001;57(5):801–5.

    CAS  PubMed  Google Scholar 

  121. Henkel AW, Dittrich PS, Groemer TW, Lemke EA, Klingauf J, Klafki HW, et al. Immune complexes of auto-antibodies against A beta 1-42 peptides patrol cerebrospinal fluid of non-Alzheimer’s patients. Mol Psychiatry. 2007;12(6):601–10. doi:10.1038/sj.mp.4001947.

    CAS  PubMed  Google Scholar 

  122. Hyman BT, Smith C, Buldyrev I, Whelan C, Brown H, Tang MX, et al. Autoantibodies to amyloid-beta and Alzheimer’s disease. Ann Neurol. 2001;49(6):808–10.

    CAS  PubMed  Google Scholar 

  123. Britschgi M, Olin CE, Johns HT, Takeda-Uchimura Y, LeMieux MC, Rufibach K, et al. Neuroprotective natural antibodies to assemblies of amyloidogenic peptides decrease with normal aging and advancing Alzheimer’s disease. Proc Natl Acad Sci USA. 2009;106(29):12145–50. doi:10.1073/pnas.0904866106.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Zotova E, Bharambe V, Cheaveau M, Morgan W, Holmes C, Harris S, et al. Inflammatory components in human Alzheimer’s disease and after active amyloid-beta42 immunization. Brain. 2013;136(Pt 9):2677–96. doi:10.1093/brain/awt210.

    PubMed  Google Scholar 

  125. Gustafsen C, Glerup S, Pallesen LT, Olsen D, Andersen OM, Nykjaer A, et al. Sortilin and SorLA display distinct roles in processing and trafficking of amyloid precursor protein. J Neurosci. 2013;33(1):64–71. doi:10.1523/JNEUROSCI.2371-12.2013.

    CAS  PubMed  Google Scholar 

  126. Willnow TE, Andersen OM. Sorting receptor SORLA—a trafficking path to avoid Alzheimer disease. J Cell Sci. 2013;126(Pt 13):2751–60. doi:10.1242/jcs.125393.

    CAS  PubMed  Google Scholar 

  127. Schmidt V, Baum K, Lao A, Rateitschak K, Schmitz Y, Teichmann A, et al. Quantitative modelling of amyloidogenic processing and its influence by SORLA in Alzheimer’s disease. EMBO J. 2012;31(1):187–200. doi:10.1038/emboj.2011.352.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Scherzer CR, Offe K, Gearing M, Rees HD, Fang G, Heilman CJ, et al. Loss of apolipoprotein E receptor LR11 in Alzheimer disease. Arch Neurol. 2004;61(8):1200–5. doi:10.1001/archneur.61.8.1200.

    PubMed  Google Scholar 

  129. Dodson SE, Gearing M, Lippa CF, Montine TJ, Levey AI, Lah JJ. LR11/SorLA expression is reduced in sporadic Alzheimer disease but not in familial Alzheimer disease. J Neuropathol Exp Neurol. 2006;65(9):866–72. doi:10.1097/01.jnen.0000228205.19915.20.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Alexopoulos P, Guo LH, Tsolakidou A, Kratzer M, Grimmer T, Westerteicher C, et al. Interrelations between CSF soluble AbetaPPbeta, amyloid-beta 1-42, SORL1, and tau levels in Alzheimer’s disease. J Alzheimers Dis. 2012;28(3):543–52. doi:10.3233/JAD-2011-110983.

    CAS  PubMed  Google Scholar 

  131. Tsolakidou A, Alexopoulos P, Guo LH, Grimmer T, Westerteicher C, Kratzer M, et al. Beta-site amyloid precursor protein-cleaving enzyme 1 activity is related to cerebrospinal fluid concentrations of sortilin-related receptor with A-type repeats, soluble amyloid precursor protein, and tau. Alzheimers Dement. 2013;9(4):386–91. doi:10.1016/j.jalz.2012.01.015.

    PubMed  Google Scholar 

  132. Dinkel PD, Siddiqua A, Huynh H, Shah M, Margittai M. Variations in filament conformation dictate seeding barrier between three- and four-repeat tau. Biochemistry. 2011;50(20):4330–6. doi:10.1021/bi2004685.

    CAS  PubMed  Google Scholar 

  133. Brys M, Pirraglia E, Rich K, Rolstad S, Mosconi L, Switalski R, et al. Prediction and longitudinal study of CSF biomarkers in mild cognitive impairment. Neurobiol Aging. 2009;30(5):682–90. doi:10.1016/j.neurobiolaging.2007.08.010.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev. 2000;33(1):95–130.

    CAS  PubMed  Google Scholar 

  135. Billingsley ML, Kincaid RL. Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J. 1997;323(Pt 3):577–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Uchihara T, Hara M, Nakamura A, Hirokawa K. Tangle evolution linked to differential 3- and 4-repeat tau isoform deposition: a double immunofluorolabeling study using two monoclonal antibodies. Histochem Cell Biol. 2012;137(2):261–7. doi:10.1007/s00418-011-0891-2.

    CAS  PubMed  Google Scholar 

  137. Clavaguera F, Lavenir I, Falcon B, Frank S, Goedert M, Tolnay M. “Prion-like” templated misfolding in tauopathies. Brain Pathol. 2013;23(3):342–9. doi:10.1111/bpa.12044.

    CAS  PubMed  Google Scholar 

  138. Gile GH, Faktorova D, Castlejohn CA, Burger G, Lang BF, Farmer MA, et al. Distribution and phylogeny of EFL and EF-1alpha in Euglenozoa suggest ancestral co-occurrence followed by differential loss. PloS One. 2009;4(4):e5162. doi:10.1371/journal.pone.0005162.

    PubMed Central  PubMed  Google Scholar 

  139. Luk C, Compta Y, Magdalinou N, Marti MJ, Hondhamuni G, Zetterberg H, et al. Development and assessment of sensitive immuno-PCR assays for the quantification of cerebrospinal fluid three- and four-repeat tau isoforms in tauopathies. J Neurochem. 2012;123(3):396–405. doi:10.1111/j.1471-4159.2012.07911.x.

    CAS  PubMed  Google Scholar 

  140. Yang FM, Grigorenko A, Tommet D, Farias ST, Mungas D, Bennett DA, et al. AD pathology and cerebral infarctions are associated with memory and executive functioning one and five years before death. J Clin Exp Neuropsychol. 2012. doi:10.1080/13803395.2012.740001.

    PubMed Central  PubMed  Google Scholar 

  141. Lee JM, Blennow K, Andreasen N, Laterza O, Modur V, Olander J, et al. The brain injury biomarker VLP-1 is increased in the cerebrospinal fluid of Alzheimer disease patients. Clin Chem. 2008;54(10):1617–23. doi:10.1373/clinchem.2008.104497.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Tarawneh R, D’Angelo G, Macy E, Xiong C, Carter D, Cairns NJ, et al. Visinin-like protein-1: diagnostic and prognostic biomarker in Alzheimer disease. Ann Neurol. 2011;70(2):274–85. doi:10.1002/ana.22448.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Luo X, Hou L, Shi H, Zhong X, Zhang Y, Zheng D, et al. CSF levels of the neuronal injury biomarker visinin-like protein-1 in Alzheimer’s disease and dementia with Lewy bodies. J Neurochem. 2013. doi:10.1111/jnc.12331.

    Google Scholar 

  144. Braunewell KH. The visinin-like proteins VILIP-1 and VILIP-3 in Alzheimer’s disease-old wine in new bottles. Front Mol Neurosci. 2012;5:20. doi:10.3389/fnmol.2012.00020.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW Jr, et al. Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology. 2001;56(1):127–9.

    CAS  PubMed  Google Scholar 

  146. Bogdanovic N, Davidsson P, Volkmann I, Winblad B, Blennow K. Growth-associated protein GAP-43 in the frontal cortex and in the hippocampus in Alzheimer’s disease: an immunohistochemical and quantitative study. J Neural Transm. 2000;107(4):463–78.

    CAS  PubMed  Google Scholar 

  147. Milne GL, Musiek ES, Morrow JD. F2-isoprostanes as markers of oxidative stress in vivo: an overview. Biomarkers. 2005;10(Suppl 1):S10–23. doi:10.1080/13547500500216546.

    CAS  PubMed  Google Scholar 

  148. Il’yasova D, Morrow JD, Ivanova A, Wagenknecht LE. Epidemiological marker for oxidant status: comparison of the ELISA and the gas chromatography/mass spectrometry assay for urine 2,3-dinor-5,6-dihydro-15-F2t-isoprostane. Ann Epidemiol. 2004;14(10):793–7. doi:10.1016/j.annepidem.2004.03.003.

    PubMed  Google Scholar 

  149. Janicka M, Kot-Wasik A, Kot J, Namiesnik J. Isoprostanes-biomarkers of lipid peroxidation: their utility in evaluating oxidative stress and analysis. Int J Mol Sci. 2010;11(11):4631–59. doi:10.3390/ijms11114631.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Yan W, Byrd GD, Ogden MW. Quantitation of isoprostane isomers in human urine from smokers and nonsmokers by LC-MS/MS. J Lipid Res. 2007;48(7):1607–17. doi:10.1194/jlr.M700097-JLR200.

    CAS  PubMed  Google Scholar 

  151. Klawitter J, Haschke M, Shokati T, Klawitter J, Christians U. Quantification of 15-F2t-isoprostane in human plasma and urine: results from enzyme-linked immunoassay and liquid chromatography/tandem mass spectrometry cannot be compared. Rapid Commun Mass Spectrom. 2011;25(4):463–8. doi:10.1002/rcm.4871.

    CAS  PubMed  Google Scholar 

  152. Tsikas D, Suchy MT. Assessment of urinary F(2)-isoprostanes in experimental and clinical studies: mass spectrometry versus ELISA. Hypertension. 2012;60(2):e14; author reply e5. doi:10.1161/HYPERTENSIONAHA.112.199315.

  153. Montine TJ, Kaye JA, Montine KS, McFarland L, Morrow JD, Quinn JF. Cerebrospinal fluid abeta42, tau, and f2-isoprostane concentrations in patients with Alzheimer disease, other dementias, and in age-matched controls. Arch Pathol Lab Med. 2001;125(4):510–2. doi:10.1043/0003-9985(2001)125<0510:CFATAF>2.0.CO;2.

    CAS  PubMed  Google Scholar 

  154. Mosconi L, Glodzik L, Mistur R, McHugh P, Rich KE, Javier E, et al. Oxidative stress and amyloid-beta pathology in normal individuals with a maternal history of Alzheimer’s. Biol Psychiatry. 2010;68(10):913–21. doi:10.1016/j.biopsych.2010.07.011.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Duits FH, Kester MI, Scheffer PG, Blankenstein MA, Scheltens P, Teunissen CE, et al. Increase in cerebrospinal fluid F2-isoprostanes is related to cognitive decline in APOE epsilon4 carriers. J Alzheimers Dis. 2013;36(3):563–70. doi:10.3233/JAD-122227.

    CAS  PubMed  Google Scholar 

  156. Kester MI, Scheffer PG, Koel-Simmelink MJ, Twaalfhoven H, Verwey NA, Veerhuis R, et al. Serial CSF sampling in Alzheimer’s disease: specific versus non-specific markers. Neurobiol Aging. 2012;33(8):1591–8. doi:10.1016/j.neurobiolaging.2011.05.013.

    CAS  PubMed  Google Scholar 

  157. Montine TJ, Quinn JF, Milatovic D, Silbert LC, Dang T, Sanchez S, et al. Peripheral F2-isoprostanes and F4-neuroprostanes are not increased in Alzheimer’s disease. Ann Neurol. 2002;52(2):175–9. doi:10.1002/ana.10272.

    CAS  PubMed  Google Scholar 

  158. Sarma JV, Ward PA. The complement system. Cell Tissue Res. 2011;343(1):227–35. doi:10.1007/s00441-010-1034-0.

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1094–9. doi:10.1038/ng.439.

    CAS  PubMed  Google Scholar 

  160. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1088–93. doi:10.1038/ng.440.

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA. 2010;303(18):1832–40. doi:10.1001/jama.2010.574.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet. 2011;43(5):429–35. doi:10.1038/ng.803.

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Eikelenboom P, Hack CE, Kamphorst W, Rozemuller JM. Distribution pattern and functional state of complement proteins and alpha 1-antichymotrypsin in cerebral beta/A4 deposits in Alzheimer’s disease. Res Immunol. 1992;143(6):617–20.

    CAS  PubMed  Google Scholar 

  164. Crehan H, Holton P, Wray S, Pocock J, Guerreiro R, Hardy J. Complement receptor 1 (CR1) and Alzheimer’s disease. Immunobiology. 2012;217(2):244–50. doi:10.1016/j.imbio.2011.07.017.

    CAS  PubMed  Google Scholar 

  165. Daborg J, Andreasson U, Pekna M, Lautner R, Hanse E, Minthon L, et al. Cerebrospinal fluid levels of complement proteins C3, C4 and CR1 in Alzheimer’s disease. J Neural Transm. 2012;119(7):789–97. doi:10.1007/s00702-012-0797-8.

    CAS  PubMed  Google Scholar 

  166. DeKosky ST, Ikonomovic MD, Wang X, Farlow M, Wisniewski S, Lopez OL, et al. Plasma and cerebrospinal fluid alpha1-antichymotrypsin levels in Alzheimer’s disease: correlation with cognitive impairment. Ann Neurol. 2003;53(1):81–90. doi:10.1002/ana.10414.

    CAS  PubMed  Google Scholar 

  167. Manral P, Sharma P, Hariprasad G, Chandralekha, Tripathi M, Srinivasan A. Can apolipoproteins and complement factors be biomarkers of Alzheimer’s disease? Curr Alzheimer Res. 2012;9(8):935–43.

    CAS  PubMed  Google Scholar 

  168. Lo CY, Wang PN, Chou KH, Wang J, He Y, Lin CP. Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer’s disease. J Neurosci. 2010;30(50):16876–85. doi:10.1523/JNEUROSCI.4136-10.2010.

    CAS  PubMed  Google Scholar 

  169. Chien DT, Szardenings AK, Bahri S, Walsh JC, Mu F, Xia C, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808. J Alzheimers Dis. 2013. doi:10.3233/JAD-130098.

    PubMed  Google Scholar 

  170. Grimmer T, Alexopoulos P, Tsolakidou A, Guo LH, Henriksen G, Yousefi BH, et al. Cerebrospinal fluid BACE1 activity and brain amyloid load in Alzheimer’s disease. ScientificWorldJournal. 2012;2012:712048. doi:10.1100/2012/712048.

    PubMed Central  PubMed  Google Scholar 

  171. Lewczuk P, Kornhuber J, Vanderstichele H, Vanmechelen E, Esselmann H, Bibl M, et al. Multiplexed quantification of dementia biomarkers in the CSF of patients with early dementias and MCI: a multicenter study. Neurobiol Aging. 2008;29(6):812–8. doi:10.1016/j.neurobiolaging.2006.12.010.

    CAS  PubMed  Google Scholar 

  172. Finehout EJ, Franck Z, Lee KH. Complement protein isoforms in CSF as possible biomarkers for neurodegenerative disease. Dis Mark. 2005;21(2):93–101.

    CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

We wish to thank colleagues and patients and their families for generating the extensive literature that was reviewed here. We gratefully acknowledge the support of Iceland Foods Ltd., the Leonard Wolfson Experimental Neurology Centre and Alzheimer’s Research UK. This work was supported by the NIHR Queen Square Dementia BRU and the Swedish Research Council. The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Zetterberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paterson, R.W., Toombs, J., Slattery, C.F. et al. Biomarker Modelling of Early Molecular Changes in Alzheimer’s Disease. Mol Diagn Ther 18, 213–227 (2014). https://doi.org/10.1007/s40291-013-0069-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-013-0069-9

Keywords

Navigation