Skip to main content
Log in

Dissociated lower limb muscle involvement in amyotrophic lateral sclerosis

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

It has been suggested that corticomotoneuronal drive to ankle dorsiflexors is greater than to ankle plantar flexor muscles, despite the finding that plantar flexors are no less active than TA during walking and standing. The present study was undertaken to determine whether there was differential involvement of distal lower limb muscles in amyotrophic lateral sclerosis (ALS), to elucidate pathophysiological mechanisms of selective muscle involvement. Prospective studies were undertaken in 52 ALS patients, including clinical assessment, disease staging (revised ALS functional rating scale), Medical Research Council sum score, and a scale of upper motor neurone (UMN) dysfunction. Motor unit number estimates (MUNE) and compound muscle action potentials (CMAP) from ankle dorsiflexors and plantar flexors were used to provide objective measures. A novel ‘split leg index’ was calculated as follows: SLI = CMAPDF ÷ CMAPPF. In ALS, there was significantly greater reduction of MUNE and CMAP amplitude recorded from plantar flexors when compared to dorsiflexors, suggesting preferential involvement of plantar flexor muscles, underpinning a ‘split leg’ appearance. The SLI correlated with clinical plantar flexor strength (R= −0.56, p < 0.001). In no patient did the SLI suggest preferential dorsiflexor involvement. In subgroup analyses, mean SLI was greatest in lower limb-onset ALS. In conclusion, the present study has established dissociated involvement of muscles acting around the ankle in ALS. We suggest this reflects underlying differences in cortical, descending or local spinal modulation of these muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ravits JM, La Spada AR (2009) ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73(10):805–811

    Article  PubMed Central  PubMed  Google Scholar 

  2. Simon NG, Lomen-Hoerth C, Kiernan MC (2014) Patterns of clinical and electrodiagnostic abnormalities in early amyotrophic lateral sclerosis. Muscle Nerve. doi:10.1002/mus.24244

    Google Scholar 

  3. Devine MS, Kiernan MC, Heggie S, McCombe PA, Henderson RD (2014) Study of motor asymmetry in ALS indicates an effect of limb dominance on onset and spread of weakness, and an important role for upper motor neurons. Amyotroph Lateral Scler Frontotemporal Degen. doi:10.3109/21678421.2014.906617

    Google Scholar 

  4. Wilbourn AJ (2000) The split hand syndrome. Muscle Nerve 23:138

    Article  CAS  PubMed  Google Scholar 

  5. Kuwabara S, Mizobuchi K, Ogawara K, Hattori T (1999) Dissociated small hand muscle involvement in amyotrophic lateral sclerosis detected by motor unit number estimates. Muscle Nerve 22(7):870–873

    Article  CAS  PubMed  Google Scholar 

  6. Brouwer B, Ashby P (1992) Corticospinal projections to lower limb motoneurons in man. Exp Brain Res 89(3):649–654

    Article  CAS  PubMed  Google Scholar 

  7. Ravits J, Paul P, Jorg C (2007) Focality of upper and lower motor neuron degeneration at the clinical onset of ALS. Neurology 68(19):1571–1575

    Article  PubMed  Google Scholar 

  8. Turner MR, Brockington A, Scaber J, Hollinger H, Marsden R, Shaw PJ et al (2010) Pattern of spread and prognosis in lower limb-onset ALS. Amyotroph Lateral Scler. 11(4):369–373

    Article  PubMed Central  PubMed  Google Scholar 

  9. Brooks BR (1996) Natural history of ALS: symptoms, strength, pulmonary function, and disability. Neurology 47(4 Suppl 2):S71–S81

    Article  CAS  PubMed  Google Scholar 

  10. de Carvalho M, Dengler R, Eisen A, England JD, Kaji R, Kimura J et al (2008) Electrodiagnostic criteria for diagnosis of ALS. Clin Neurophysiol 119(3):497–503

    Article  PubMed  Google Scholar 

  11. Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B et al (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci 169(1–2):13–21

    Article  CAS  PubMed  Google Scholar 

  12. Medical Research Council (1976) Aid to the examination of the peripheral nervous system. Her Majesty’s Stationary Office, London

    Google Scholar 

  13. Simon NG, Lin CS-Y, Lee M, Howells J, Vucic S, Burke D et al (2014) Segmental motoneuronal dysfunction is a feature of amyotrophic lateral sclerosis. Clin Neurophysiol. doi:10.1016/j.clinph.2014.07.029

    Google Scholar 

  14. Lin CS, Chan JH, Pierrot-Deseilligny E, Burke D (2002) Excitability of human muscle afferents studied using threshold tracking of the H reflex. J Physiol 545(Pt 2):661–669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Blok JH, Ruitenberg A, Maathuis EM, Visser GH (2007) The electrophysiological muscle scan. Muscle Nerve 36(4):436–446

    Article  PubMed  Google Scholar 

  16. Ridall PG, Pettitt AN, Henderson RD, McCombe PA (2006) Motor unit number estimation—a Bayesian approach. Biometrics 62(4):1235–1250

    Article  PubMed  Google Scholar 

  17. Henderson RD, Ridall PG, Hutchinson NM, Pettitt AN, McCombe PA (2007) Bayesian statistical MUNE method. Muscle Nerve 36(2):206–213

    Article  PubMed  Google Scholar 

  18. Morse CI, Tolfrey K, Thom JM, Vassilopoulos V, Maganaris CN, Narici MV (2008) Gastrocnemius muscle specific force in boys and men. J Appl Physiol (1985) 104(2):469–474

    Article  Google Scholar 

  19. Mitchell JD, Borasio GD (2007) Amyotrophic lateral sclerosis. Lancet 369:2031–2041

    Article  CAS  PubMed  Google Scholar 

  20. Twitchell TE (1951) The restoration of motor function following hemiplegia in man. Brain 74(4):443–480

    Article  CAS  PubMed  Google Scholar 

  21. Stewart JD (2008) Foot drop: where, why and what to do? Pract Neurol 8:158–169

    Article  PubMed  Google Scholar 

  22. Lunsford BR, Perry J (1995) The standing heel-rise test for ankle plantar flexion: criterion for nornal. Phys Ther 75:694–698

    CAS  PubMed  Google Scholar 

  23. Scarmeas N, Shih T, Stern Y, Ottman R, Rowland LP (2002) Premorbid weight, body mass, and varsity athletics in ALS. Neurology 59:773–775

    Article  CAS  PubMed  Google Scholar 

  24. Liu MQ, Anderson FC, Pandy MG, Delp SL (2006) Muscles that support the body also modulate forward progression during walking. J Biomech 39(14):2623–2630

    Article  PubMed  Google Scholar 

  25. Courtine G, Papaxanthis C, Schiepatti M (2006) Coordinated modulation of locomotor muscle synergies constructs straight ahead and curvilinear walking in humans. Exp Brain Res 170:320–335

    Article  PubMed  Google Scholar 

  26. Eisen A, Kuwabara S (2012) The split hand syndrome in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 83(4):399–403

    Article  PubMed  Google Scholar 

  27. Eisen A, Kim S, Pant B (1992) Amyotrophic lateral sclerosis (ALS): a phylogenetic disease of the corticomotoneuron? Muscle Nerve 15:219–224

    Article  CAS  PubMed  Google Scholar 

  28. Weber M, Eisen A, Stewart H, Hirota N (2000) The split hand in ALS has a cortical basis. J Neurol Sci 180:66–70

    Article  CAS  PubMed  Google Scholar 

  29. Voermans NC, Schelhaas HJ, Munneke M, Zwarts MJ (2006) Dissociated small hand muscle atrophy in aging: the ‘senile hand’ is a split hand. Eur J Neurol 13:1381–1384

    Article  CAS  PubMed  Google Scholar 

  30. Bae JS, Sawai S, Misawa S, Kanai K, Isose S, Kuwabara S (2009) Differences in excitability properties of FDI and ADM motor axons. Muscle Nerve 39(3):350–354

    Article  PubMed  Google Scholar 

  31. Hudson HM, Griffin DM, Belhaj-Saif A, Cheney PD (2013) Cortical output to fast and slow muscles of the ankle in the rhesus macaque. Front Neural Circuit 7:33

    Article  Google Scholar 

  32. Brouwer B, Ashby P (1990) Corticospinal projections to upper and lower limb spinal motoneurons in man. Electroencephalogr Clin Neurol. 76(6):509–519

    Article  CAS  Google Scholar 

  33. Valls-Sole J, Alvarez R, Tolosa ES (1994) Responses of the soleus muscle to transcranial magnetic stimulation. Electroencephalogr Clin Neurol 93(6):421–427

    Article  CAS  Google Scholar 

  34. Menon P, Bae JS, Mioshi E, Kiernan MC, Vucic S (2013) Split-hand plus sign in ALS: differential involvement of the flexor pollicis longus and intrinsic hand muscles. Amyotroph Lateral Scler Frontotemporal Degen 14(4):315–318

    Article  Google Scholar 

  35. Bae JS, Menon P, Mioshi E, Kiernan MC, Vucic S (2013) Cortical excitability differences between flexor pollicis longus and APB. Neurosci Lett 29(541):150–154

    Article  Google Scholar 

  36. Bae JS, Menon P, Mioshi E, Kiernan MC, Vucic S (2014) Cortical hyperexcitability and the split-hand plus phenomenon: pathophysiological insights in ALS. Amyotroph Lateral Scler Frontotemporal Degen 15(3–4):250–256

    Article  Google Scholar 

  37. Menon P, Kiernan MC, Vucic S (2014) Cortical excitability differences in hand muscles follow a split-hand pattern in healthy controls. Muscle Nerve 49(6):836–844

    Article  PubMed  Google Scholar 

  38. Menon P, Kiernan MC, Vucic S (2014) Cortical dysfunction underlies the development of the split-hand in amyotrophic lateral sclerosis. PLoS One 9(1):e87124

    Article  PubMed Central  PubMed  Google Scholar 

  39. Turner MR, Kiernan MC (2012) Does interneuronal dysfunction contribute to neurodegeneration in amyotrophic lateral sclerosis? Amyotroph Lateral Scler 13(3):245–250

    Article  PubMed  Google Scholar 

  40. Swash M (2012) Why are upper motor neuron signs difficult to elicit in amyotrophic lateral sclerosis? J Neurol Neurosurg Psychiatry 83(6):659–662

    Article  PubMed  Google Scholar 

  41. Walshe FMR (1914) The physiological significance of the reflex phenomena in spastic paralysis of the lower limbs. Brain 37:269–336

    Article  Google Scholar 

  42. Isa T, Kinoshita M, Nishimura Y (2013) Role of direct vs. indirect pathways from the motor cortex to spinal motoneurons in the control of hand dexterity. Front Neurol 4:191

    Article  PubMed Central  PubMed  Google Scholar 

  43. Zaaimi B, Edgley SA, Soteropoulos DS, Baker SN (2012) Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey. Brain 135:2277–2289

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Simon gratefully acknowledges funding from the National Health and Medical Research Council of Australia and the Motor Neurone Disease Research Institute of Australia (grant #1039520). This work was supported by funding to Forefront, a collaborative research group dedicated to the study of motor neurone disease, from the National Health and Medical research Council of Australia Program Grant (#1037746). We are grateful to the research participants involved with the ForeFront research studies. Preliminary results from this study were presented in abstract form at the American Academy of Neurology Annual Meeting, San Diego, CA, March 21, 2013: Simon N, Bae JS, Mioshi E, Lin C, Vucic S, Kiernan M. The split leg in amyotrophic lateral sclerosis. Neurology February 12, 2013; 80 (Meeting Abstracts 1): P07.083.

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neil G. Simon or Matthew C. Kiernan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, N.G., Lee, M., Bae, J.S. et al. Dissociated lower limb muscle involvement in amyotrophic lateral sclerosis. J Neurol 262, 1424–1432 (2015). https://doi.org/10.1007/s00415-015-7721-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-015-7721-8

Keywords

Navigation