Skip to main content
Log in

Effects of aluminium phosphide on larval morphometry of two important Chrysomya species

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract  

Chrysomya megacephala and C. rufifacies are globally predominant species of blowflies that are amongst the primary colonisers of decomposing carcasses. The development of blowflies has been studied extensively to estimate the minimum postmortem interval (PMImin). This article evaluates the effect of aluminium phosphide (AlP) on the larval morphometry and life cycles of C. megacephala and C. rufifacies. The rabbits were given different dosages of AlP and their livers were excised to rear C. megacephala and C. rufifacies. Through multiple-regression analysis, we assessed the overall impact of varying dosages of AlP on larvae of both species. AlP accelerated development until pupation, whilst the time until emergence remained the same. At higher concentrations, AlP had a positive effect on the development of these species. Since both species are abundant, forensic entomology studies examining the effect of AlP on morphometry and developmental stages would provide valuable information to investigators assessing PMImin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Boedeker W, Watts M, Clausing P, Marquez E (2020) The global distribution of acute unintentional pesticide poisoning: estimations based on a systematic review. BMC Public Health 20:1875. https://doi.org/10.1186/s12889-020-09939-0

    Article  PubMed  PubMed Central  Google Scholar 

  2. World Health Organization & International Programme on Chemical Safety. (2010). The WHO recommended classification of pesticides by hazard and guidelines to classification 2009. World Health Organization. https://apps.who.int/iris/handle/10665/44271 (Accessed 19 April 2022)

  3. Pawar RP, et al. (2021) Accidental deaths & suicides in India 2020. In: Department of Statistics (ed.) Accidental Death and Suicides in India. 54th edn. National Crime Records Bureau. Ministry of Home Affairs –India, New Delhi.

  4. da Silva EIT, Wilhelmi B, Villet MH (2017) Forensic entomotoxicology revisited—towards professional standardisation of study designs. Int J Legal Med 131:1399–1412. https://doi.org/10.1007/s00414-017-1603-9

    Article  PubMed  Google Scholar 

  5. Catts EP (1992) Problems in estimating the postmortem interval in death investigations. J Agric Entomol 9:245–255

    Google Scholar 

  6. Campobasso CP, Di Vella G, Introna F (2001) Factors affecting decomposition and Diptera colonisation. Forensic Sci Int 120:18–27. https://doi.org/10.1016/S0379-0738(01)00411-X

    Article  PubMed  CAS  Google Scholar 

  7. Tracqui A, Keyser-Tracqui C, Kintz P, Ludes B (2004) Entomotoxicology for the forensic toxicologist: much ado about nothing? Int J Legal Med 118:194–196. https://doi.org/10.1007/s00414-004-0442-7

    Article  PubMed  CAS  Google Scholar 

  8. Chophi R, Sharma SS, Sharma SS, Singh R (2019) Forensic entomotoxicology: current concepts, trends and challenges. J Forensic Leg Med 67:28–36. https://doi.org/10.1016/j.jflm.2019.07.010

    Article  PubMed  Google Scholar 

  9. Wilson Z, Hubbard S, Pounder DJ (1993) Drug analysis in fly larvae. Am J Foren Med Path 14:118–120. https://doi.org/10.1097/00000433-199306000-00002

    Article  CAS  Google Scholar 

  10. Salimi M, Rassi Y, Chatrabgoun O, Kamali A, Oshaghi MA, Shiri-Ghaleh V, Moradi M, Rafizadeh S, Akbarzadeh K, Parkhideh SZ (2018) Toxicological analysis of insects on the corpse: a valuable source of information in forensic investigations. J Arthropod Borne Dis 12(3):219–231

    PubMed  PubMed Central  Google Scholar 

  11. Groth O, Franz S, Fels H, Krueger J, Roider G, Dame T, Musshoff F, Graw M (2021) Unexpected results found in larvae samples from two postmortem forensic cases. Forensic Toxicol 40:144–155. https://doi.org/10.1007/s11419-021-00601-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Goff ML, Lord WD (1994) Entomotoxicology. A new area for forensic investigation. Am J Forensic Med Pathol 15:51–57. https://doi.org/10.1097/00000433-199403000-00012

    Article  PubMed  CAS  Google Scholar 

  13. Carvalho LML, Linhares AX, Trigo JR (2001) Determination of drug levels and the effect of diazepam on the growth of necrophagous flies of forensic importance in southeastern Brazil. Forensic Sci Int 120:140–144. https://doi.org/10.1016/S0379-0738(01)00421-2

    Article  PubMed  CAS  Google Scholar 

  14. Gagliano-Candela R, Aventaggiato L (2001) The detection of toxic substances in entomological specimens. Int J Legal Med 114:197–203. https://doi.org/10.1007/s004140000181

    Article  PubMed  CAS  Google Scholar 

  15. Gosselin M, Wille SM, Fernandez Mdel M, Di Fazio V, Samyn N, De Boeck G, Bourel B (2011) Entomotoxicology, experimental set-up, and interpretation for forensic toxicologists. Forensic Sci Int 208:1–9. https://doi.org/10.1016/j.forsciint.2010.12.015

    Article  PubMed  CAS  Google Scholar 

  16. Introna F, Campobasso CP, Goff ML (2001) Entomotoxicology. Forensic Sci Int 120:42–47. https://doi.org/10.1016/s0379-0738(01)00418-2

    Article  PubMed  CAS  Google Scholar 

  17. Bhardwaj T, Sharma S, Dalal J, Verma K (2020) The implication of morphometrics and growth rate of dipteran flies in forensic entomotoxicology research: a review. Naturwissenschaften 107:50. https://doi.org/10.1007/s00114-020-01707-9

    Article  PubMed  CAS  Google Scholar 

  18. Amendt J, Richards CS, Campobasso CP, Zehner R, Hall MJR (2011) Forensic entomology: applications and limitations. Forensic Sci Med Pathol 7:379–392. https://doi.org/10.1007/s12024-010-9209-2

    Article  PubMed  CAS  Google Scholar 

  19. Wells JD, LaMotte LR (1995) Estimating maggot age from weight using inverse prediction. J Forensic Sci 40(4):585–590. https://doi.org/10.1520/JFS13830J

  20. Sukontason K, Piangjai S, Siriwattanarungsee S, Sukontason KL (2008) Morphology and developmental rate of blowflies Chrysomya megacephala and Chrysomya rufifacies in Thailand: application in forensic entomology. Parasitol Res 102:1207–1216. https://doi.org/10.1007/s00436-008-0895-6

    Article  PubMed  Google Scholar 

  21. Kantak MP, Ghodkirekar MS, Perni SG (2004) Utility of daubert guidelines in India. J Indian Acad Forensic Med 26(3):110–112

    Google Scholar 

  22. Monthei DR (2009) Entomotoxicological and thermal factors affecting the development of forensically important flies. Dissertation. Virginia Polytechnic Institute and State University

  23. Siwach SB, Gupta A (1995) The profile of acute poisonings in Harayana-Rohtak Study. J Assoc Physicians India 43:756–759

    PubMed  CAS  Google Scholar 

  24. Bogle RG, Theron P, Brooks P, Dargan PI, Redhead J (2006) Aluminium phosphide poisoning. Emerg Med J 23:e3. https://doi.org/10.1136/emj.2004.015941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sharma V, Sharma A (2009) Aluminium phosphide poisoning. Indian J Med Sci 63:561–562. https://doi.org/10.4103/0972-5229.58547

    Article  PubMed  Google Scholar 

  26. Etemadi-Aleagha A, Akhgari M, Iravani FS (2015) Aluminum phosphide poisoning-related deaths in Tehran, Iran, 2006 to 2013. Medicine (Baltimore) 94(38):e1637. https://doi.org/10.1097/MD.0000000000001637

    Article  PubMed  CAS  Google Scholar 

  27. Mehrpour O, Alfred S, Shadnia S, Keyler DE, Soltaninejad K, Chalaki N, Sedaghat M (2008) Hyperglycemia in acute aluminum phosphide poisoning as a potential prognostic factor. Hum Exp Toxicol 27:591–595. https://doi.org/10.1177/0960327108096382

    Article  PubMed  CAS  Google Scholar 

  28. Gurjar M, Baronia AK, Azim A, Sharma K (2011) Managing aluminum phosphide poisonings. J Emerg Trauma Shock 4:378–384. https://doi.org/10.4103/0974-2700.83868

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yan H, Xiang P, Zhang S, Shen B, Shen M (2017) Diagnosis of aluminum phosphide poisoning using a new analytical approach: forensic application to a lethal intoxication. Int J Legal Med 131:1001–1007. https://doi.org/10.1007/s00414-017-1562-1

    Article  PubMed  Google Scholar 

  30. Yan H et al (2018) Phosphine analysis in postmortem specimens following inhalation of phosphine: fatal aluminum phosphide poisoning in children. J Anal Toxicol 42:330–336. https://doi.org/10.1093/jat/bky005

    Article  PubMed  CAS  Google Scholar 

  31. Musshoff F, Preuss J, Lignitz E, Madea B (2008) A gas chromatographic analysis of phosphine in biological material in a case of suicide. Forensic Sci Int 177:e35–e38. https://doi.org/10.1016/j.forsciint.2007.12.007

    Article  PubMed  CAS  Google Scholar 

  32. Greenberg B (1991) Flies as forensic indicators. J Med Entomol 28:565–577. https://doi.org/10.1093/jmedent/28.5.565

    Article  PubMed  CAS  Google Scholar 

  33. Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94:12–24. https://doi.org/10.1007/s00114-006-0159-1

    Article  PubMed  CAS  Google Scholar 

  34. Simmons T, Adlam RE, Moffatt C (2010) Debugging decomposition data: comparative taphonomic studies and the influence of insects and carcass size on decomposition rate. J Forensic Sci 55:8–13. https://doi.org/10.1111/j.1556-4029.2009.01206.x

    Article  PubMed  Google Scholar 

  35. Singh D, Bharti M, Singh T (1999) Forensic entomology in the Indian perspective. J Punjab Acad Sci I:217–220

    Google Scholar 

  36. Singh D, Bharti M (2001) Further observations on the nocturnal oviposition behaviour of blow flies (Diptera: Calliphoridae). Forensic Sci Int 120:124–126. https://doi.org/10.1016/S0379-0738(01)00419-4

    Article  PubMed  CAS  Google Scholar 

  37. Bharti M, Singh D (2003) Insect faunal succession on decaying rabbit carcasses in Punjab, India. J Forensic Sci 48:1133–1143

    Article  PubMed  Google Scholar 

  38. Suri Babu B, Sharma H, Bharti M (2013) Estimation of post-mortem interval by rearing Chrysomya rufifacies (Macquart, 1842) (Diptera: Calliphoridae): a case study from central India. Anil Aggrawals Internet J Forensic Med Toxicol 14:1–11

    Google Scholar 

  39. Abajue MC, Ewuim SC (2020) Evaluation of activities of dipteran maggots on a poisoned pig cadaver at Nnamdi Azikiwe University Awka. Nigeria Egypt J Forensic Sci 10:33. https://doi.org/10.1186/s41935-020-00208-0

    Article  Google Scholar 

  40. El-Samad LM, Hussein HK, Toto NA, Mahmoud DM, Radwan EH (2021) Variation of insect succession in summer on decomposing rabbit carrion treated with aluminum phosphide in Beheira Governorate. Egypt. Swed J Biosci Res 2:91–102. https://doi.org/10.51136/SJBSR.2021.91.102

    Article  Google Scholar 

  41. Ghiasvand K, Soltanian N, Naghshzan M, Pouladian S, Hoseinpour A, Soltani A (2022) The effects of chemicals used for suicide on insect succession, diversity, and development: an animal model. Indian J Forensic Med Toxicol 16:709–719

    CAS  Google Scholar 

  42. El-Ashram S, Toto NA, Wakil AE, Augustyniak M, El-Samad LM (2021) Reduced body length and morphological disorders in Chrysomya albiceps (Wiedemann, 1819) (Diptera: Calliphoridae) larvae reared on aluminum phosphide-treated rabbits. Sci Rep 19:8358. https://doi.org/10.1038/s41598-022-12351-w

    Article  CAS  Google Scholar 

  43. Sukontason K, Sukontason KL, Ngern-Klun R, Sripakdee D, Piangjai S (2004) Differentiation of the third instar of forensically important fly species in Thailand. Ann Entomol Soc Am 97(6):1069–1075. https://doi.org/10.1603/0013-8746(2004)097[1069:dottio]2.0.co;2

    Article  Google Scholar 

  44. Moghadamnia AA (2012) An update on toxicology of aluminum phosphide. DARU J Pharm Sci 20(1):25. https://doi.org/10.1186/2008-2231-20-25

    Article  CAS  Google Scholar 

  45. Leary S, Raymond A, Cartner S, Corey D, Grandin T, Greenacre C, McCrackin MA, Meyer R, Miller D, Shearer J, Yanong R (2020) AVMA guidelines for the euthanasia of animals. In: Association AVM (Ed), 2020 edn. American Veterinary Medical Association, Schaumburg, IL, 121

  46. Abdollahi M, Mehrpour O (2014) Aluminum phosphide. In: Philip Wexler (Ed) Encyclopedia of Toxicology (Third Edition). Academic Press 164–166. https://doi.org/10.1016/B978-0-12-386454-3.00467-X

  47. Carvalho LML (2009) Toxicology and forensic entomology. In Current Concepts in Forensic Entomology ( 163–178). Springer, Dordrecht.

  48. Sudakin DL (2005) Occupational exposure to aluminium phosphide and phosphine gas? A suspected case report and review of the literature. Hum Exp Toxicol 24(1):27–33. https://doi.org/10.1191/0960327105ht496oa

    Article  PubMed  CAS  Google Scholar 

  49. Montana A, Rapisarda V, Esposito M, Amico F, Cocimano G, Nunno ND, Ledda C, Salerno M (2021) A rare case of suicide by ingestion of phorate: a case report and a review of the literature. Healthcare 9(2):131. https://doi.org/10.3390/healthcare9020131

    Article  PubMed  PubMed Central  Google Scholar 

  50. Simonelli A, Carfora A, Basilicata P, Liguori B, Mascolo P, Policino F, Niola M, Campobasso CP (2022) Suicide by pesticide (phorate) ingestion: case report and review of literature. Toxics 10(5):205. https://doi.org/10.3390/toxics10050205

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mathai A, Bhanu MS (2010) Acute aluminium phosphide poisoning: can we predict mortality? Indian J Anaesth 54(4):302. https://doi.org/10.4103/0019-5049.68372

    Article  PubMed  PubMed Central  Google Scholar 

  52. Baumgartner DL (1993) Review of Chrysomya rufifacies (Diptera: Calliphoridae). J Med Entomol 30(2):338–352. https://doi.org/10.1093/jmedent/30.2.338

    Article  PubMed  CAS  Google Scholar 

  53. Badenhorst R, Villet MH (2018) The uses of Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae) in forensic entomology. Forensic Sci Res 3:2–15. https://doi.org/10.1080/20961790.2018.1426136

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gunatilake K, Goff ML (1989) Detection of organophosphate poisoning in a putrefying body by analysing arthropod larvae. J Forensic Sci 34:714–716

    Article  PubMed  CAS  Google Scholar 

  55. Goff ML, Flynn MM (1991) Determination of postmortem interval by arthropod succession: a case study from the Hawaiian islands. J Forensic Sci 36:607–614. https://doi.org/10.1520/jfs13067j

    Article  PubMed  CAS  Google Scholar 

  56. Sukontason K, Sukontason K, Vichairat K, Piangjai S, Lertthamnongtham S, Vogtsberger RC, Olson JK (2001) The first documented forensic entomology case in Thailand. J Med Entomol 38:746–748. https://doi.org/10.1603/0022-2585-38.5.746

    Article  PubMed  CAS  Google Scholar 

  57. Abd RR, Osman K, Iswadi MI, Muhammad ZR, Abu HR (2008) Determination of malathion levels and the effect of malathion on the growth of Chrysomya megacephala (Fibricius) in a malathion-exposed rat carcass. Trop Biomed 25:184–190

    Google Scholar 

  58. Goff ML, Lord WD (2010) Entomotoxicology: insects as toxicological indicators and the impact of drugs and toxins on insect development. In: Byrd JH, Castner JL (eds) Forensic Entomology - The utility of arthropods in legal investigation (Second Edition). CRC Press, pp 427–434

    Google Scholar 

  59. Rezende F, Alonso MA, Souza CM, Thyssen PJ, Linhares AX (2014) Developmental rates of immatures of three Chrysomya species (Diptera: Calliphoridae) under the effect of methylphenidate hydrochloride, phenobarbital, and methylphenidate hydrochloride associated with phenobarbital. Parasitol Res 113:1897–1907. https://doi.org/10.1007/s00436-014-3837-5

    Article  PubMed  Google Scholar 

  60. Trivia AL, de Carvalho Pinto CJ (2018) Analysis of the effect of cyclophosphamide and methotrexate on Chrysomya megacephala (Diptera: Calliphoridae). J Forensic Sci 63:1413–1418. https://doi.org/10.1111/1556-4029.13740

    Article  PubMed  CAS  Google Scholar 

  61. Liu X, Shi Y, Wang H, Zhang RJ (2009) Determination of malathion levels and its effect on the development of Chrysomya megacephala (Fabricius) in South China. Forensic Sci Int 192:14–18. https://doi.org/10.1016/j.forsciint.2009.07.005

    Article  PubMed  CAS  Google Scholar 

  62. Yan-Wei S, Xiao-Shan L, Hai-Yang W, Run-Jie Z (2010) Effects of malathion on the insect succession and the development of Chrysomya megacephala (Diptera: Calliphoridae) in the field and implications for estimating postmortem interval. Am J Forensic Med Pathol 31:46–51. https://doi.org/10.1097/PAF.0b013e3181c215b4

    Article  PubMed  Google Scholar 

  63. Ekrakene T, Odo PE (2017) Comparative developmental effects of tramadol hydrochloride and cypermethrin on Chrysomyaalbiceps (Weid.) (Diptera: Calliphoridae) reared on rabbit carrion. Sci World J 12:28–32. https://doi.org/10.13140/RG.2.2.29164.59523

    Article  Google Scholar 

  64. Rashid RA, Zulkifli NF, Rashid RA, RosliBt SF, Sulaiman SHS, Ahmad NW (2012) Effects of Ketum extract on blowfly (Chrysomya megacephala) development and detection of mitragynine in larvae sample. 2012 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA) 337–341. https://doi.org/10.1109/ISBEIA.2012.6422898

  65. Chick A (2014) The effect of nicotine on carrion feeding insects with considerations for use within forensic sciences. Dissertation. Nottingham Trent University.

  66. Mullany C, Keller PA, Nugraha AS, Wallman JF (2014) Effects of methamphetamine and its primary human metabolite, p-hydroxymethamphetamine, on the development of the Australian blowfly, Calliphora stygia. Forensic Sci Int 241:102–111. https://doi.org/10.1016/j.forsciint.2014.05.003

    Article  PubMed  CAS  Google Scholar 

  67. Wang S, Zhang C, Chen W, Ren L, Ling J, Shang Y, Guo Y (2020) Effects of methamphetamine on the development and its determination in Aldrichina grahami (Diptera: Calliphoridae). J Med Entomol 57:691–696. https://doi.org/10.1093/jme/tjz239

    Article  PubMed  CAS  Google Scholar 

  68. Duke LD (2003) Effects of amitriptyline and nortriptyline on time of death estimations in the later postmortem interval using insect development. Dissertation. Simon Fraser University.

  69. Pien K, Laloup M, Pipeleers-Marichal M, Grootaert P, De Boeck G, Samyn N, Boonen T, Vits K, Wood M (2004) Toxicological data and growth characteristics of single post-feeding larvae and puparia of Calliphora vicina (Diptera: Calliphoridae) obtained from a controlled nordiazepam study. Int J Legal Med 118:190–193. https://doi.org/10.1007/s00414-004-0441-8

    Article  PubMed  Google Scholar 

  70. Lv Z, Zhai XD, Zhou HM, Li P, Ma JQ, Guan L, Mo YN (2012) Effect of ketamine on the development of Chrysomya megacephala (Diptera: Calliphoridae). Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 30:361–366

    PubMed  Google Scholar 

  71. Nusair SD, Abed SI, Rashaid AHB (2017) Chlorpromazine impacts on the length and width of Sarcophaga haemorrhoidalis (Diptera: Sarcophagidae) larvae: potential forensic implications. J Entomol Sci 52:370–378. https://doi.org/10.18474/JES17-33.1

    Article  Google Scholar 

  72. Hecht L, Klotzbach H, Schröder H, Püschel K (2007) Einfluss von Methadon auf die Entwicklung von Lucilia sericata: Untersuchungen im Hinblick auf Todeszeitbestimmungen. Rechtsmedizin 17:83–88. https://doi.org/10.1007/s00194-007-0429-z

    Article  Google Scholar 

  73. Fathy HM, Attia RAH, Yones DA, Eldeek HEME, Tolba MEM, Shaheen MSI (2008) Effect of codeine phosphate on developmental stages of forensically important Calliphoride fly: Chrysomya albiceps. Mansoura J Forensic Med Clin Toxicol XVI:41–59

  74. El-Samad LM, El-Moaty ZA, Makemer HM (2011) Effects of tramadol on the development of Lucilia sericata (Diptera: Calliphoridae) and detection of the drug concentration in postmortem rabbit tissues and larvae. J Entomol 8:353–364. https://doi.org/10.3923/je.2011.353.364

    Article  CAS  Google Scholar 

  75. Ferraz AC, Dallavecchia DL, Silva DC, Figueiredo AL, Proença B, Silva-Filho RG, Aguiar VM (2014) Effects of the antibiotic, gentamicin, on the postembryonic development of Chrysomya Putoria (Diptera: Calliphoridae). J Insect Sci 14:279. https://doi.org/10.1093/jisesa/ieu141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Essarras A, Pazzi M, Dadour IR, Magni PA (2018) The effect of antifreeze (ethylene glycol) on the survival and the life cycle of two species of necrophagous blowflies (Diptera: Calliphoridae). Sci Justice 58:85–89. https://doi.org/10.1016/j.scijus.2017.12.008

    Article  PubMed  Google Scholar 

  77. Zanetti NI, Ferrero AA, Centeno ND (2019) The use of two fly species to detect the anti-depressant fluoxetine postmortem (Diptera: Calliphoridae: Lucilia sericata Meigen, Sarcophagidae: Sarcophaga crassipalpis Macquart). Entomol Am 125(1–4):4–9. https://doi.org/10.1664/1947-5136-125.1.4

    Article  Google Scholar 

  78. Amendt J, Campobasso CP, Gaudry E, Reiter C, LeBlanc HN, Hall MJ (2007) Best practice in forensic entomology—standards and guidelines. Int J Legal Med 121(2):90–104. https://doi.org/10.1007/s00414-006-0086-x

    Article  PubMed  Google Scholar 

  79. Adams ZJO, Hall MJR (2003) Methods used for the killing and preservation of blowfly larvae, and their effect on post-mortem larval length. Forensic Sci Int 138:50–61. https://doi.org/10.1016/j.forsciint.2003.08.010

    Article  PubMed  Google Scholar 

  80. Haskell NH (1990) Procedures in the entomology laboratory, in: Catts EP, Haskell NH (Eds), Entomology and Death: A Procedural Guide, Joyce’s Print Shop Inc., Clemson, South Carolina, 111–122.

  81. Byrd JH (2001) Laboratory rearing of forensic insects. In: Byrd JH, Castner JL (eds) Forensic Entomology. The Utility of Arthropds in Legal Investigations, CRC Press, London, New York, pp 127–128

    Google Scholar 

  82. Bugelli V, Campobasso CP, Verhoff MA, Amendt J (2017) Effects of different storage and measuring methods on larval length values for the blow flies (Diptera: Calliphoridae) Lucilia sericata and Calliphora vicina. Sci Justice 57(3):159–164. https://doi.org/10.1016/j.scijus.2016.10.008

    Article  PubMed  Google Scholar 

  83. Moffatt C, Heaton V, De Haan D (2016) The distribution of blow fly (Diptera: Calliphoridae) larval lengths and its implications for estimating post mortem intervals. Int J Legal Med 130(1):287–297. https://doi.org/10.1007/s00414-015-1289-9

    Article  PubMed  Google Scholar 

  84. Anderson GS (2000) Minimum and maximum development rates of some forensically important Calliphoridae (Diptera). J Forensic Sci 45(4):824–832. https://doi.org/10.1520/JFS14778J

    Article  PubMed  CAS  Google Scholar 

  85. Day DM, Wallman JF (2006) Width as an alternative measurement to length for post-mortem interval estimations using Calliphora augur (Diptera: Calliphoridae) larvae. Forensic Sci Int 159(2–3):158–167. https://doi.org/10.1016/j.forsciint.2005.07.009

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Minakshi Vashist, Head of the Department of Genetics, Maharshi Dayanand University, Rohtak, for permitting the use of the bio-oxygen demand incubator to maintain controlled temperature conditions for conducting the experiments.

Funding

The funding for this study was provided by the University Grants Commission (UGC), Government of India as a Junior Research Fellowship [UGC-Ref No. 3557/(NET-JULY 2018)].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Tapeshwar Bhardwaj. The first draft of the manuscript was written by Tapeshwar Bhardwaj and all authors commented on previous versions of the manuscript. Dr. Sapna Sharma supervised the entire study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sapna Sharma.

Ethics declarations

Ethical approval

Rabbit procurement, handling, and experiments were approved by the Institutional Animal Ethical Committee (IAEC), Maharshi Dayanand University, Rohtak (letter number: CAH/69–75 dated 26 February 2021).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, T., Sharma, S., Dalal, J. et al. Effects of aluminium phosphide on larval morphometry of two important Chrysomya species. Int J Legal Med 138, 73–83 (2024). https://doi.org/10.1007/s00414-022-02940-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-022-02940-9

Keywords

Navigation