Skip to main content
Log in

Development of an NGS panel containing 42 autosomal STR loci and the evaluation focusing on secondary kinship analysis

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

High-throughput next-generation sequencing (NGS) is a feasible technique to detect considerably more markers and simultaneously obtain length and sequence information in a single reaction. In this study, we developed an NGS panel including 42 commonly used autosomal short tandem repeats (STRs) and amelogenin on the Illumina MiSeq FGx™. Sequencing accuracy was validated by the consistency of 2800M Control DNA detected using the ForenSeq™ DNA Signature Prep Kit and Sanger sequencing. Nomenclature incompatibility was found between NGS-STR and CE-STR typing at 9 loci (D3S3045, D6S477, D7S3048, D9S925, D14S608, D17S1290, D18S535, D21S1270, GATA198B05), despite the correct sequence. The difference was caused by the two different methods of identifying motif sequence and a one-to-one correspondence can be found. We evaluated the panel by investigating consistency, sequencing sensitivity and the effectiveness of the 2nd-degree relationship identification. Herein, we present sequencing results from 58 unrelated individuals of the Hebei Han population. The total discrimination power (TDP) and cumulative probability of exclusion for trio paternity testing (CPEtrio) of the 42 NGS-STR panels reached 1–2.84 × 10−57 and 1–9.87 × 10−21, respectively. By family simulation and likelihood ratio (LR) calculation, this panel was shown to have effectiveness for the 2nd-degree kinship identification similar to the ForenSeq™ DNA Signature Prep Kit and certain advantages compared with it due to the relatively small number of loci. As expected, it provides new data for the development of NGS-STR typing technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jobling MA, Gill P (2004) Encoded evidence: DNA in forensic analysis. Nat Rev Genet 5:739–751. https://doi.org/10.1038/nrg1455

    Article  PubMed  Google Scholar 

  2. Martín P, de Simón LF, Luque G, Farfán MJ, Alonso A (2014) Improving DNA data exchange: validation studies on a single 6 dye STR kit with 24 loci. Forensic Sci Int Genet 13:68–78. https://doi.org/10.1016/j.fsigen.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  3. Wang DY, Gopinath S, Lagacé RE, Norona W, Hennessy LK, Short ML, Mulero JJ (2015) Developmental validation of the GlobalFiler ® Express PCR Amplification Kit: a 6-dye multiplex assay for the direct amplification of reference samples. Forensic Sci Int Genet 19:148–155. https://doi.org/10.1016/j.fsigen.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  4. Phillips C, Gelabert-Besada M, Fernandez-Formoso L, García-Magariños M, Santos C, Fondevila M, Ballard D, Syndercombe Court D, Carracedo A, Lareu MV (2014) “New turns from old STaRs”: enhancing the capabilities of forensic short tandem repeat analysis. Electrophoresis 35:3173–3187. https://doi.org/10.1002/elps.201400095

    Article  CAS  PubMed  Google Scholar 

  5. Børsting C, Morling N (2015) Next generation sequencing and its applications in forensic genetics. Forensic Sci Int Genet 18:78–89. https://doi.org/10.1016/j.fsigen.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  6. Guo F, Zhou Y, Liu F, Yu J, Song H, Shen H, Zhao B, Jia F, Hou G, Jiang X (2016) Evaluation of the Early Access STR Kit v1 on the Ion Torrent PGM™ platform. Forensic Sci Int Genet 23:111–120. https://doi.org/10.1016/j.fsigen.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  7. Wang Z, Zhou D, Wang H, Jia Z, Liu J, Qian X, Li C, Hou Y (2017) Massively parallel sequencing of 32 forensic markers using the Precision ID GlobalFiler™ NGS STR Panel and the Ion PGM™ System. Forensic Sci Int Genet 31:126–134. https://doi.org/10.1016/j.fsigen.2017.09.004

    Article  CAS  PubMed  Google Scholar 

  8. Devesse L, Ballard D, Davenport L, Riethorst I, Mason-Buck G, Syndercombe Court D (2018) Concordance of the ForenSeq™ system and characterisation of sequence-specific autosomal STR alleles across two major population groups. Forensic Sci Int Genet 34:57–61. https://doi.org/10.1016/j.fsigen.2017.10.012

    Article  CAS  PubMed  Google Scholar 

  9. Müller P, Alonso A, Barrio PA, Berger B, Bodner M, Martin P, Parson W, DNASEQEX Consortium (2018) Systematic evaluation of the early access applied biosystems precision ID Globalfiler mixture ID and Globalfiler NGS STR panels for the ion S5 system. Forensic Sci Int Genet 36:95–103. https://doi.org/10.1016/j.fsigen.2018.06.016

    Article  CAS  PubMed  Google Scholar 

  10. Fordyce S, Ávila-Arcos M, Rockenbauer E et al (2011) High-throughput sequencing of core STR loci for forensic genetic investigations using the Roche Genome Sequencer FLX platform. Biotechniques. https://doi.org/10.2144/000113721

  11. Dalsgaard S, Rockenbauer E, Gelardi C et al (2013) Characterization of mutations and sequence variations in complex STR loci by second generation sequencing. Forensic Sci Int Genet Suppl Ser 4:e218–e219. https://doi.org/10.1016/j.fsigss.2013.10.112

    Article  Google Scholar 

  12. Rockenbauer E, Hansen S, Mikkelsen M, Børsting C, Morling N (2014) Characterization of mutations and sequence variants in the D21S11 locus by next generation sequencing. Forensic Sci Int Genet 8:68–72. https://doi.org/10.1016/j.fsigen.2013.06.011

    Article  CAS  PubMed  Google Scholar 

  13. Wendt FR, King JL, Novroski NMM, Churchill JD, Ng J, Oldt RF, McCulloh K, Weise JA, Smith DG, Kanthaswamy S, Budowle B (2017) Flanking region variation of ForenSeq™ DNA Signature Prep Kit STR and SNP loci in Yavapai Native Americans. Forensic Sci Int Genet 28:146–154. https://doi.org/10.1016/j.fsigen.2017.02.014

    Article  CAS  PubMed  Google Scholar 

  14. Parson W, Ballard D, Budowle B, Butler JM, Gettings KB, Gill P, Gusmão L, Hares DR, Irwin JA, King JL, Knijff P, Morling N, Prinz M, Schneider PM, Neste CV, Willuweit S, Phillips C (2016) Massively parallel sequencing of forensic STRs: considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements. Forensic Sci Int Genet 22:54–63. https://doi.org/10.1016/j.fsigen.2016.01.009

    Article  CAS  PubMed  Google Scholar 

  15. Lin Y, Que T, Zhao Z, Zhang S (2015) Forensic Investigation of Goldeneye™ DNA ID 22NC Kit. J Forensic Med 31:280–283. https://doi.org/10.3969/j.issn.1004-5619.2015.04.007 (in Chinese)

    Article  Google Scholar 

  16. Xie B, Chen L, Yang Y, Lv Y, Chen J, Shi Y, Chen C, Zhao H, Yu Z, Liu Y, Fang X, Yan J (2015) Genetic distribution of 39 STR loci in 1027 unrelated Han individuals from Northern China. Forensic Sci Int Genet 19:205–206. https://doi.org/10.1016/j.fsigen.2015.07.019

    Article  CAS  PubMed  Google Scholar 

  17. Sun L, Shi K, Tan L, Zhang Q, Fu L, Zhang X, Fu G, Li S, Cong B (2017) Analysis of genetic polymorphisms and mutations at 19 STR loci in Hebei Han population. Forensic Sci Int Genet 31:e50–e51. https://doi.org/10.1016/j.fsigen.2017.07.016

    Article  CAS  PubMed  Google Scholar 

  18. Yuan L, Ge J, Lu D, Yang X (2012) Population data of 21 non-CODIS STR loci in Han population of Northern China. Int J Legal Med 126:659–664. https://doi.org/10.1007/s00414-011-0664-4

    Article  PubMed  Google Scholar 

  19. Churchill JD, Novroski NMM, King JL, Seah LH, Budowle B (2017) Population and performance analyses of four major populations with Illumina’s FGx Forensic Genomics System. Forensic Sci Int Genet 30:81–92. https://doi.org/10.1016/j.fsigen.2017.06.004

    Article  CAS  PubMed  Google Scholar 

  20. Liu Y, Guo L, Jin H, Li Z, Bai R, Shi M, Ma S (2017) Developmental validation of a 6-dye typing system with 27 loci and application in Han population of China. Sci Rep 7:4706. https://doi.org/10.1038/s41598-017-04548-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gjertson DW, Brenner CH, Baur MP et al (2007) ISFG: recommendations on biostatistics in paternity testing. Forensic Sci Int Genet 1:223–231. https://doi.org/10.1016/j.fsigen.2007.06.006

    Article  PubMed  Google Scholar 

  22. Phillips C (2017) A genomic audit of newly-adopted autosomal STRs for forensic identification. Forensic Sci Int Genet 29:193–204. https://doi.org/10.1016/j.fsigen.2017.04.011

    Article  CAS  PubMed  Google Scholar 

  23. Yuan L, Ye J, Jiang C et al (2010) Study of six STR loci fluorescent multiplex PCR amplification and genetic polymorphism in Han populations of the North of China. J People’s Public Secur Univ China (Science Technol) 16:30–34. https://doi.org/10.3969/j.issn.1007-1784.2010.01.009 (in Chinese)

    Article  Google Scholar 

  24. Ohtaki H, Yamamoto T, Yoshimoto T, Uchihi R, Ooshima C, Katsumata Y, Tokunaga K (2002) A powerful, novel, multiplex typing system for six short tandem repeat loci and the allele frequency distributions in two Japanese regional populations. Electrophoresis 23:3332–3340. https://doi.org/10.1002/1522-2683(200210)23:19<3332::AID-ELPS3332>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  25. Pei L, Ye J, Kong M et al (2005) Genetic polymorphism of two STR loci D1S1609 and D18S976 in Chinese Han population of Beijing. Hereditas (Beijing) 27:21–24 (in Chinese)

    CAS  Google Scholar 

  26. Zhu J, Chen Z, Liu J et al (2005) Genetic polymorphism of four STR loci on chromosome 21 in Han population in Beijing. Anat Res 27:58–62 (in Chinese)

    Google Scholar 

  27. Yuan L, Ye J, Jiang C, Zhang F (2010) Genetic polymorphism of three STR loci in Xiuyan Manchu and Guangzhou Han populations. J People’s Public Secur Univ China (Science Technol) 16:15–18. https://doi.org/10.3969/j.issn.1007-1784.2010.02.005 (in Chinese)

    Article  Google Scholar 

  28. Liu J, Shao W, Li L, Yang Y (2011) Construction and application of fluorescent-multiplex PCR of six new STR loci. Chin J Forensic Sci 59:30–34 (in Chinese)

    Google Scholar 

  29. Wu S, Zhang H, Pang L (2007) Mutation of STR in two parentage testing cases. J Wenzhou Med Coll 37:363–365 371 (in Chinese)

    CAS  Google Scholar 

  30. Staadig A, Tillmar A (2019) An overall limited effect on the weight-of-evidence when taking STR DNA sequence polymorphism into account in kinship analysis. Forensic Sci Int Genet 39:44–49. https://doi.org/10.1016/j.fsigen.2018.11.020

    Article  CAS  PubMed  Google Scholar 

  31. Mo S-K, Ren Z-L, Yang Y-R, Liu YC, Zhang JJ, Wu HJ, Li Z, Bo XC, Wang SQ, Yan JW, Ni M (2018) A 472-SNP panel for pairwise kinship testing of second-degree relatives. Forensic Sci Int Genet 34:178–185. https://doi.org/10.1016/j.fsigen.2018.02.019

    Article  CAS  PubMed  Google Scholar 

  32. Wei T, Liao F, Wang Y, Pan C, Xiao C, Huang D (2018) A novel multiplex assay of SNP-STR markers for forensic purpose. PLoS One 13:e0200700. https://doi.org/10.1371/journal.pone.0200700

    Article  PubMed  PubMed Central  Google Scholar 

  33. Oldoni F, Podini D (2019) Forensic molecular biomarkers for mixture analysis. Forensic Sci Int Genet 41:107–119. https://doi.org/10.1016/j.fsigen.2019.04.003

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81671875) and Hebei Province Science Fund (H2017206351).

Author information

Authors and Affiliations

Authors

Contributions

SL and BC designed the study. QL, QD, QW and GF extracted DNA and operated CE test. QL and QD performed NGS test. QL, QD, GM and LF carried out the statistical analysis. GM performed the simulation and evaluation on secondary kinship analysis. All authors contributed to interpretation of the data. QL, GM and SL wrote the first and last drafts of the manuscript and all authors made critical revisions. SL takes responsibility for the integrity of the data and accuracy of the data analysis.

Corresponding authors

Correspondence to Shujin Li or Bin Cong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

Ethical consent was obtained from the ethics committee of Hebei Medical University and statements on informed consent from the adult volunteers and the parents of minors before the collection of blood samples.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Comparisons of log10(CGI) distribution curves from 3 aspects: (A) _SEQ vs. _LEN groups, (B) _P vs. _R groups and (C) between different panels. The u values and P-values of Mann-Whitney u tests are listed in the figures. All figures share common legends according to the following rules: (i) _42, _SIG and _COM groups are coloured red, blue and green, respectively; (ii) the colour of _R groups are darker than the corresponding _P groups; (iii) the _LEN groups are dotted; (iv) UR groups are labelled the same as, and just slightly thinner than, the corresponding KS groups. Number of Alleles. (DOCX 615 kb).

ESM 2

(DOCX 17 kb).

ESM 3

(XLSX 25 kb).

ESM 4

(XLSX 494 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Ma, G., Du, Q. et al. Development of an NGS panel containing 42 autosomal STR loci and the evaluation focusing on secondary kinship analysis. Int J Legal Med 134, 2005–2014 (2020). https://doi.org/10.1007/s00414-020-02295-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-020-02295-z

Keywords

Navigation