Skip to main content

Advertisement

Log in

DNA methylation levels and telomere length in human teeth: usefulness for age estimation

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

In the last decade, increasing knowledge of epigenetics has led to the development of DNA methylation-based models to predict age, which have shown high predictive accuracy. However, despite the value of teeth as forensic samples, few studies have focused on this source of DNA. This study used bisulfite pyrosequencing to measure the methylation levels of specific CpG sites located in the ELOVL2, ASPA, and PDE4C genes, with the aim of selecting the most age-informative genes and determining their associations with age, in 65 tooth samples from individuals 15 to 85 years old. As a second aim, methylation data and measurements of relative telomere length in the same set of samples were used to develop preliminary age prediction models to evaluate the accuracy of both biomarkers together and separately in estimating age from teeth for forensic purposes. In our sample, several CpG sites from ELOVL2 and PDE4C genes, as well as telomere length, were significantly associated with chronological age. We developed age prediction quantile regression models based on DNA methylation levels, with and without telomere length as an additional variable, and adjusted for type of tooth and sex. Our results suggest that telomere length may have limited usefulness as a supplementary marker for DNA methylation-based age estimation in tooth samples, given that it contributed little improvement in the prediction errors of the models. In addition, even at older ages, DNA methylation appeared to be more informative in predicting age than telomere length when both biomarkers were evaluated separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cunha E, Baccino E, Martrille L, Ramsthaler F, Prieto J, Schuliar Y, Lynnerup N, Cattaneo C (2009) The problem of aging human remains and living individuals: a review. Forensic Sci Int 193:1–13. https://doi.org/10.1016/j.forsciint.2009.09.008

    Article  CAS  PubMed  Google Scholar 

  2. Meissner C, Ritz-Timme S (2010) Molecular pathology and age estimation. Forensic Sci Int 203:34–43. https://doi.org/10.1016/j.forsciint.2010.07.010

    Article  CAS  PubMed  Google Scholar 

  3. Márquez-Ruiz AB, González-Herrera L, Valenzuela A (2018) Usefulness of telomere length in DNA from human teeth for age estimation. Int J Legal Med 132:353–359. https://doi.org/10.1007/s00414-017-1595-5

    Article  PubMed  Google Scholar 

  4. Valenzuela A, Guerra-Hernández E, Rufián-Henares JÁ, Márquez-Ruiz AB, Hougen HP, García-Villanova B (2018) Differences in non-enzymatic glycation products in human dentine and clavicle: changes with aging. Int J Legal Med 132:1749–1758. https://doi.org/10.1007/s00414-018-1908-3

    Article  PubMed  Google Scholar 

  5. Corrêa HSD, Pedro FLM, Volpato LER, Pereira TM, Siebert Filho G, Borges ÁH (2017) Forensic DNA typing from teeth using demineralized root tips. Forensic Sci Int 280:164–168. https://doi.org/10.1016/j.forsciint.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  6. Jones MJ, Goodman SJ, Kobor MS (2015) DNA methylation and healthy human aging. Aging Cell 14:924–932. https://doi.org/10.1111/acel.12349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Freire-Aradas A, Phillips C, Lareu M (2017) Forensic individual age estimation with DNA: from initial approaches to methylation tests. Forensic Sci Rev 29:121–144

    CAS  PubMed  Google Scholar 

  8. Bekaert B, Kamalandua A, Zapico SC, van de Voorde W, Decorte R (2015) Improved age determination of blood and teeth samples using a selected set of DNA methylation markers. Epigenetics 10:922–930. https://doi.org/10.1080/15592294.2015.1080413

    Article  PubMed  PubMed Central  Google Scholar 

  9. Freire-Aradas A, Phillips C, Girón-Santamaría L, Mosquera-Miguel A, Gómez-Tato A, Casares de Cal MÁ, Álvarez-Dios J, Lareu MV (2018) Tracking age-correlated DNA methylation markers in the young. Forensic Sci Int Genet 36:50–59. https://doi.org/10.1016/J.FSIGEN.2018.06.011

    Article  CAS  PubMed  Google Scholar 

  10. Parson W (2018) Age estimation with DNA: from forensic DNA fingerprinting to forensic (epi)genomics: a mini-review. Gerontology 64:326–332. https://doi.org/10.1159/000486239

    Article  CAS  PubMed  Google Scholar 

  11. Vidaki A, Kayser M (2018) Recent progress, methods and perspectives in forensic epigenetics. Forensic Sci Int Genet 37:180–195. https://doi.org/10.1016/J.FSIGEN.2018.08.008

    Article  CAS  PubMed  Google Scholar 

  12. Hannum G, Guinney J, Zhao L et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367. https://doi.org/10.1016/j.molcel.2012.10.016

    Article  CAS  PubMed  Google Scholar 

  13. Zbieć-Piekarska R, Spólnicka M, Kupiec T, Makowska Ż, Spas A, Parys-Proszek A, Kucharczyk K, Płoski R, Branicki W (2014) Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science. Forensic Sci Int Genet 14:161–167. https://doi.org/10.1016/j.fsigen.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  14. Zbieć-Piekarska R, Spólnicka M, Kupiec T, Parys-Proszek A, Makowska Ż, Pałeczka A, Kucharczyk K, Płoski R, Branicki W (2015) Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Sci Int Genet 17:173–179. https://doi.org/10.1016/j.fsigen.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  15. Giuliani C, Cilli E, Bacalini MG, Pirazzini C, Sazzini M, Gruppioni G, Franceschi C, Garagnani P, Luiselli D (2016) Inferring chronological age from DNA methylation patterns of human teeth. Am J Phys Anthropol 159:585–595. https://doi.org/10.1002/ajpa.22921

    Article  PubMed  Google Scholar 

  16. Park JL, Kim JH, Seo E et al (2016) Identification and evaluation of age-correlated DNA methylation markers for forensic use. Forensic Sci Int Genet 23:64–70. https://doi.org/10.1016/j.fsigen.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  17. Hamano Y, Manabe S, Morimoto C et al (2016) Forensic age prediction for dead or living samples by use of methylation-sensitive high resolution melting. Legal Med 21:5–10. https://doi.org/10.1016/j.legalmed.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  18. Zubakov D, Liu F, Kokmeijer I, Choi Y, van Meurs J, van IJcken W, Uitterlinden AG, Hofman A, Broer L, van Duijn C, Lewin J, Kayser M (2016) Human age estimation from blood using mRNA, DNA methylation, DNA rearrangement, and telomere length. Forensic Sci Int Genet 24:33–43. https://doi.org/10.1016/j.fsigen.2016.05.014

    Article  CAS  PubMed  Google Scholar 

  19. Freire-Aradas A, Phillips C, Mosquera-Miguel A, Girón-Santamaría L, Gómez-Tato A, Casares de Cal M, Álvarez-Dios J, Ansede-Bermejo J, Torres-Español M, Schneider PM, Pośpiech E, Branicki W, Carracedo Á, Lareu MV (2016) Development of a methylation marker set for forensic age estimation using analysis of public methylation data and the Agena Bioscience EpiTYPER system. Forensic Sci Int Genet 24:65–74. https://doi.org/10.1016/j.fsigen.2016.06.005

    Article  CAS  PubMed  Google Scholar 

  20. Spólnicka M, Pośpiech E, Pepłońska B, Zbieć-Piekarska R, Makowska Ż, Pięta A, Karłowska-Pik J, Ziemkiewicz B, Wężyk M, Gasperowicz P, Bednarczuk T, Barcikowska M, Żekanowski C, Płoski R, Branicki W (2018) DNA methylation in ELOVL2 and C1orf132 correctly predicted chronological age of individuals from three disease groups. Int J Legal Med 132:1–11. https://doi.org/10.1007/s00414-017-1636-0

    Article  PubMed  Google Scholar 

  21. Weidner CI, Lin Q, Koch CM et al (2014) Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 15:R24. https://doi.org/10.1186/gb-2014-15-2-r24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eipel M, Mayer F, Arent T et al (2016) Epigenetic age predictions based on buccal swabs are more precise in combination with cell type-specific DNA methylation signatures. Aging (Albany NY) 8:1034–1048. https://doi.org/10.18632/aging.100972

    Article  CAS  Google Scholar 

  23. Huang Y, Yan J, Hou J et al (2015) Developing a DNA methylation assay for human age prediction in blood and bloodstain. Forensic Sci Int Genet 17:129–136. https://doi.org/10.1016/j.fsigen.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  24. Vidal-Bralo L, Lopez-Golan Y, Gonzalez A (2016) Simplified assay for epigenetic age estimation in whole blood of adults. Front Genet 7:126. https://doi.org/10.3389/fgene.2016.00126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu C, Qu H, Wang G, Xie B, Shi Y, Yang Y, Zhao Z, Hu L, Fang X, Yan J, Feng L (2015) A novel strategy for forensic age prediction by DNA methylation and support vector regression model. Sci Rep 5:17788. https://doi.org/10.1038/srep17788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jung SE, Shin KJ, Lee HY (2017) DNA methylation-based age prediction from various tissues and body fluids. BMB Rep 50:546–553. https://doi.org/10.5483/BMBRep.2017.50.11.175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Naue J, Sänger T, Hoefsloot HCJ, Lutz-Bonengel S, Kloosterman AD, Verschure PJ (2018) Proof of concept study of age-dependent DNA methylation markers across different tissues by massive parallel sequencing. Forensic Sci Int Genet 36:152–159. https://doi.org/10.1016/j.fsigen.2018.07.007

    Article  CAS  PubMed  Google Scholar 

  28. Higgins D, Austin JJ (2013) Teeth as a source of DNA for forensic identification of human remains: a review. Sci Justice 53:433–441. https://doi.org/10.1016/j.scijus.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  29. Cawthon RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30:e47. https://doi.org/10.1093/nar/30.10.e47

    Article  PubMed  PubMed Central  Google Scholar 

  30. Furno M, Vistocco D (2018) Quantile regression: estimation and simulation, Volume 2. John Wiley & Sons, Hoboken

    Google Scholar 

  31. Koenker R (2005) Quantile regression. Cambridge University Press, Cambridge

    Book  Google Scholar 

  32. Kutner MH, Nachtsheim CJ, Neter J (2004) Applied linear regression models, 5th edn. McGraw-Hill/Irwin, New York

    Google Scholar 

  33. Sheather S (2009) A modern approach to regression with R. Springer, New York

    Book  Google Scholar 

  34. Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–82. https://doi.org/10.3354/cr030079

    Article  Google Scholar 

  35. Hyndman RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J Forecast 22:679–688. https://doi.org/10.1016/j.ijforecast.2006.03.001

    Article  Google Scholar 

  36. Valsecchi A, Irurita Olivares J, Mesejo P (2019) Age estimation in forensic anthropology: methodological considerations about the validation studies of prediction models. Int J Legal Med 133:1915–1924. https://doi.org/10.1007/s00414-019-02064-7

    Article  PubMed  Google Scholar 

  37. Smeers I, Decorte R, Van de Voorde W, Bekaert B (2018) Evaluation of three statistical prediction models for forensic age prediction based on DNA methylation. Forensic Sci Int Genet 34:128–133. https://doi.org/10.1016/J.FSIGEN.2018.02.008

    Article  CAS  PubMed  Google Scholar 

  38. Cho S, Jung S-E, Hong SR, Lee EH, Lee JH, Lee SD, Lee HY (2017) Independent validation of DNA-based approaches for age prediction in blood. Forensic Sci Int Genet 29:250–256. https://doi.org/10.1016/J.FSIGEN.2017.04.020

    Article  CAS  PubMed  Google Scholar 

  39. Shi L, Jiang F, Ouyang F, Zhang J, Wang Z, Shen X (2018) DNA methylation markers in combination with skeletal and dental ages to improve age estimation in children. Forensic Sci Int Genet 33:1–9. https://doi.org/10.1016/j.fsigen.2017.11.005

    Article  CAS  PubMed  Google Scholar 

  40. Becker J, Mahlke NS, Reckert A et al (2019) Age estimation based on different molecular clocks in several tissues and a multivariate approach: an explorative study. Int J Legal Med:1–13. https://doi.org/10.1007/s00414-019-02054-9

  41. Alisch RS, Barwick BG, Chopra P, Myrick LK, Satten GA, Conneely KN, Warren ST (2012) Age-associated DNA methylation in pediatric populations. Genome Res 22:623–632. https://doi.org/10.1101/gr.125187.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ishikawa N, Nakamura KI, Izumiyama-Shimomura N, Aida J, Matsuda Y, Arai T, Takubo K (2016) Changes of telomere status with aging: an update. Geriatr Gerontol Int 16:30–42. https://doi.org/10.1111/ggi.12772

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Appreciation is expressed to the Genomics ECAI of the Institute of Biomedical Research in Malaga (IBIMA), Malaga, Spain, the Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), Granada, Spain, for their technical support, methodological expertise, and scientific advice, and K. Shashok for improving the use of English in the manuscript.

Funding

The authors also acknowledge funding from the Andalusian Centre of Excellence for Forensic Research (CEIFA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Belén Márquez-Ruiz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Márquez-Ruiz, A.B., González-Herrera, L., Luna, J.d. et al. DNA methylation levels and telomere length in human teeth: usefulness for age estimation. Int J Legal Med 134, 451–459 (2020). https://doi.org/10.1007/s00414-019-02242-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-019-02242-7

Keywords

Navigation