Skip to main content
Log in

Development of new PCR multiplex system by the simultaneous detection of 10 miniSTRs, SE33, Penta E, Penta D, and four Y-STRs

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The 18 loci multiplex system has been instigated for co-amplification and fluorescent detection of Amelogenin and 17 STRs, including 10 MiniSTRs (CSF1PO, D18S51, D7S820, D2S1338, TPOX, D13S317, FGA, D5S818, D21S11, D16S539), SE33, Penta E, Penta D, and four Y-STRs (DYS385a/b, DYS438, DYS392). This multiplex system was developed for the simultaneous analysis of compromised DNA samples, Y-amelogenin marker mutation, motherless paternity issues where single allele sharing occurs at autosomal STRs in unrelated individuals, and other complex forensic cases. Selection of loci, primers, and allelic ladders were designed and created in-house with a design strategy to work in this multiplex. The multiplex system was evaluated by sensitivity, specificity, stability, precision and accuracy, case-type samples, mixture studies, PCR-based and population distribution studies to establish the robustness and reliability of the system as the current requirements of the forensic case work. Among all the markers evaluated for this study, 209 alleles including 44 variants were observed with combined power of discrimination, combined power of exclusion, and the combined probability of matching calculated as 0.999999999999999999893916339344, 0.999993816173890, and 5.90019 × 10−19, respectively. Due to highly polymorphic characteristics of these loci particularly SE33 and Penta E which are most discriminatory (PD = 0.991 and 0.983, respectively) in the Pakistani population, this multiplex would be highly valuable for individual identification in complex forensic cases and paternity issues as well as population database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Butler JM (2005) Forensic DNA typing: biology, technology, and genetics of STR markers. Academic Press

  2. Butler JM, Hill CR (2012) Biology and genetics of new autosomal STR loci useful for forensic DNA analysis. Forensic Sci Rev 24:15–26

    CAS  PubMed  Google Scholar 

  3. Wiegand P, Budowle B, Rand S, Brinkmann B (1993) Forensic validation of the STR systems SE 33 and TC 11. Int J Leg Med 105(6):315–320

    Article  CAS  Google Scholar 

  4. Jobling MA, Gill P (2004) Encoded evidence: DNA in forensic analysis. Nat Rev Genet 5(10):739–751

    Article  CAS  PubMed  Google Scholar 

  5. National DNA Database statistics, Q1 2015 to 2016. National DNA Database statistics. UK Government Home Office

  6. Zamir A, Dell’Ariccia-Carmon A, Zaken N, Oz C (2012) The Israel DNA database—the establishment of a rapid, semi-automated analysis system. Forensic Sci Int Genet 6(2):286–289

    Article  CAS  PubMed  Google Scholar 

  7. Nick V (2015) Kuwait to institute mandatory DNA testing for all residents. Huffington Post. Retrieved 10 October 2015

  8. Hill CR, Kline MC, Coble MD, Butler JM (2008) Characterization of 26 miniSTR loci for improved analysis of degraded DNA samples. J Forensic Sci 53(1):73–80

    Article  CAS  PubMed  Google Scholar 

  9. Hill CR, Butler JM, Vallone PM (2009) A 26plex autosomal STR assay to aid human identity testing. J Forensic Sci 54(5):1008–1015

    Article  CAS  PubMed  Google Scholar 

  10. Jiang X, Guo F, Jia F, Jin P, Sun Z (2013) Development of a 20-locus fluorescent multiplex system as a valuable tool for national DNA database. Forensic Sci Int Genet 7(2):279–289

    Article  CAS  PubMed  Google Scholar 

  11. Guo F, Shen H, Tian H, Jin P, Jiang X (2014) Development of a 24-locus multiplex system to incorporate the core loci in the Combined DNA Index System (CODIS) and the European Standard Set (ESS). Forensic Sci Int Genet 8(1):44–54

    Article  CAS  PubMed  Google Scholar 

  12. Zhang S, Bian Y, Tian H, Wang Z, Hu Z, Li C (2015) Development and validation of a new STR 25-plex typing system. Forensic Sci Int Genet 17:61–69

    Article  CAS  PubMed  Google Scholar 

  13. Wiegand P, Kleiber M (2001) Less is more–length reduction of STR amplicons using redesigned primers. Int J Leg Med 114(4–5):285–287

    Article  CAS  Google Scholar 

  14. Tsukada K, Takayanagi K, Asamura H, Ota M, Fukushima H (2002) Multiplex short tandem repeat typing in degraded samples using newly designed primers for the TH01, TPOX, CSF1PO, and vWA loci. Leg Med 4(4):239–245

    Article  CAS  Google Scholar 

  15. Whitaker JP, Clayton TM, Urquhart AJ, Millican ES, Downes TJ, Kimpton CP, Gill P (1995) Short tandem repeat typing of bodies from a mass disaster: high success rate and characteristic amplification patterns in highly degraded samples. Biotechniques 18(4):670–677

    CAS  PubMed  Google Scholar 

  16. Butler JM, Shen Y, McCord BR (2003) The development of reduced size STR amplicons as tools for analysis of degraded DNA. J Forensic Sci 48(5):1054–1064

    Article  CAS  PubMed  Google Scholar 

  17. Drábek J, Chung DT, Butler JM, McCord BR (2004) Concordance study between Miniplex assays and a commercial STR typing kit. J Forensic Sci 49(4):859–860

    Article  PubMed  Google Scholar 

  18. Bender K, Farfán MJ, Schneider PM (2004) Preparation of degraded human DNA under controlled conditions. Forensic Sci Int 139(2):135–140

    Article  CAS  PubMed  Google Scholar 

  19. Grubwieser P, Mühlmann R, Berger B, Niederstätter H, Pavlic M, Parson W (2006) A new “miniSTR-multiplex” displaying reduced amplicon lengths for the analysis of degraded DNA. Int J Leg Med 120(2):115–120

    Article  CAS  Google Scholar 

  20. Budowle B, Moretti TR, Niezgoda SJ, Brown BL (1998) CODIS and PCR-based short tandem repeat loci: law enforcement tools. Proceedings of the Second European Symposium on Human Identification. Promega Corporation 73–88

  21. Butler JM (2006) Genetics and genomics of core short tandem repeat loci used in human identity testing. J Forensic Sci 51(2):253–265

    Article  CAS  PubMed  Google Scholar 

  22. Hares DR (2012) Expanding the CODIS core loci in the United States. Forensic Sci Int Genet 6(1):e52–e54

    Article  CAS  PubMed  Google Scholar 

  23. Bacher J, Hennes LF, Gu T, Tereba A, Micka KA, Sprecher CJ, Lins AM, Amiott EA, Rabbach DR, Taylor JA, Helms C, Keller HD, Schumm JW (1999) Pentanucleotide repeats: highly polymorphic genetic markers displaying minimal stutter artifact. In Proceedings from the Ninth International Symposium on Human Identification

  24. Santos FR, Pandya A, Tyler-Smith C (1998) Reliability of DNA-based sex tests. Nat Genet 18(2):103–103

    Article  CAS  PubMed  Google Scholar 

  25. Thangaraj K, Reddy AG, Singh L (2002) Is the amelogenin gene reliable for gender identification in forensic casework and prenatal diagnosis? Int J Leg Med 116(2):121–123

    Article  CAS  Google Scholar 

  26. Gonzalez-Andrade F, Sanchez D, Penacino G, Jarreta BM (2009) Two fathers for the same child: a deficient paternity case of false inclusion with autosomic STRs. Forensic Sci Int Genet 3(2):138–140

    Article  CAS  PubMed  Google Scholar 

  27. Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12(4):656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shafique M, Shahzad MS, Shan MA, Ali A, Rahman Z, Husnain T (2015) Genetic polymorphism of ten MiniSTR loci in the population of Punjab Pakistan for forensic application. Int J Leg Med 129(5):937–942

    Article  Google Scholar 

  30. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Bioinform Methods Protocol 365–386

  31. Haas-Rochholz H, Weiler G (1997) Additional primer sets for an amelogenin gene PCR-based DNA-sex test. Int J Leg Med 110(6):312–315

    Article  CAS  Google Scholar 

  32. Polymeropoulos MH, Rath DS, Xiao H, Merril CR (1992) Tetranucleotide repeat polymorphism at the human beta-actin related pseudogene H-beta-Ac-psi-2 (ACTBP2). Nucleic Acids Res 20(6):1432–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. De Knijff P, Kayser M, Caglia A, Corach D, Fretwell N, Gehrig C, Graziosi G, Heidorn F, Herrmann F, Herzog B, Hidding M, Honda K, Jobling M, Krawczak M, Leim K, Meuser S, Meyer E, Oesterreich W, Pandya A, Parson W, Penacino G, Perez-Lezaun A, Piccinini A, Prinz M, Schmitt C, Schneider PM, Szibor R, Teifel-Greding J, Weichhold G, Roewer L, Chromosome Y (1997) Microsatellites: population genetic and evolutionary aspects. Int J Leg Med 110(3):134–140

    Article  Google Scholar 

  34. Krenke BE, Tereba A, Anderson SJ, Buel E, Culhane S, Finis CJ, Tomsey CS, Zachetti JM, Masibay A, Rabbach DR, Amiott EA, Sprecher CJ (2002) Validation of a 16-locus fluorescent multiplex system. J Forensic Sci 47(4):773–785

    Article  CAS  PubMed  Google Scholar 

  35. Butler JM, Schoske R, Vallone PM, Kline MC, Redd AJ, Hammer MF (2002) A novel multiplex for simultaneous amplification of 20 Y chromosome STR markers. Forensic Sci Int 129(1):10–24

    Article  CAS  PubMed  Google Scholar 

  36. Henegariu O, Heerema NA, Dlouhy SR, Vance GH, Vogt PH (1997) Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques 23(3):504–511

    CAS  PubMed  Google Scholar 

  37. Signer E, Kuenzle CC, Thomann PE, Hübscher U (1988) DNA fingerprinting: improved DNA extraction from small blood samples. Nucleic Acids Res 16(15):7738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual, vol 545. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  39. Griffiths RAL, Barber MD, Johnson PE, Gillbard SM, Haywood MD, Smith CD, Arnold J, Burke T, Urquhart AJ, Gill P (1998) New reference allelic ladders to improve allelic designation in a multiplex STR system. Int J Leg Med 111(5):267–272

    Article  CAS  Google Scholar 

  40. Tereba A (1999) Tools for analysis of population statistics. Profiles DNA 2(3):14–16

    Google Scholar 

  41. Lui K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21(9):2128–2129

    Article  Google Scholar 

  42. Presley LA, Mudd JL (1996) The development of quality assurance measures in forensic DNA typing. In 16th Congress of the International Society for Forensic Haemogenetics, Santiago de Compostela, 12–16, 675–677

  43. Sparkes R, Kimpton C, Gilbard S, Carne P, Andersen J, Oldroyd N, Thomas D, Urquhart A, Gill P (1995) The validation of a 7-locus multiplex STR test for use in forensic casework (II) Artefacts, casework studies and success rates. Int J Legal Med 109(4):195–204

    Article  Google Scholar 

  44. Sparkes R, Kimpton C, Watson S, Oldroyd N, Barnett L, Arnold J, Thompson C, Hale R, Chapman J, Urquhart A, Gill P, Clayton T (1996) The validation of a 7-locus multiplex STIR test for use in forensic casework. Int J Leg Med 109(4):186–194

    Article  CAS  Google Scholar 

  45. Wallin J, Buoncristiani M, Lazaruk K, Fildes N, Holt C, Walsh P (1998) TWGDAM validation of the AmpFlSTR Blue PCR amplification Kit for forensic casework analysis. J Forensic Sci 43(4):854–870

    Article  CAS  PubMed  Google Scholar 

  46. Schmid D, Anslinger K, Rolf B (2005) Allele frequencies of the ACTBP2 (= SE33), D18S51, D8S1132, D12S391, D2S1360, D3S1744, D5S2500, D7S1517, D10S2325 and D21S2055 loci in a German population sample. Forensic Sci Int 151(2):303–305

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shafique.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 18 kb)

ESM 2

(DOCX 42 kb)

ESM 3

(DOCX 19 kb)

ESM 4

(DOCX 20 kb)

ESM 5

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafique, M., Shahzad, M.S., Rahman, Z. et al. Development of new PCR multiplex system by the simultaneous detection of 10 miniSTRs, SE33, Penta E, Penta D, and four Y-STRs. Int J Legal Med 130, 1409–1419 (2016). https://doi.org/10.1007/s00414-016-1372-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-016-1372-x

Keywords

Navigation