Skip to main content
Log in

Simultaneous quantification of tobacco alkaloids and major phase I metabolites by LC-MS/MS in human tissue

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Introduction

Insurance agencies might request laboratories to differentiate whether a deceased has been a smoker or not to decide about refunding of his nonsmoker rate. In this context, the question on a solid proof of tobacco alkaloids and major metabolites in tissues came up. Currently, an appropriate assay is still lacking to analyze tissue distribution in smokers or nonsmokers. Nicotine (NIC), nornicotine (NNIC), anatabine (ATB), anabasine (ABS), and myosmine (MYO) are naturally occurring alkaloids of the tobacco plant; most important phase I metabolites of NIC are cotinine (COT), norcotinine (NCOT), trans-3′-hydroxycotinine (HCOT), nicotine-N′-oxide (NNO), and cotinine-N-oxide (CNO). An analytical assay for their determination was developed and applied to five randomly selected autopsy cases.

Methods

Homogenates using 500 mg aliquots of tissue samples were analyzed by liquid chromatography/tandem mass spectrometry following solid phase extraction. The method was validated according to current international guidelines.

Results

NIC, COT, NCOT, ABS, ATB, and HCOT could be detected in all tissues under investigation. Highest NIC concentrations were observed in the lungs, whereas highest COT concentrations have been found in the liver. MYO was not detectable in any of the tissues under investigation.

Conclusions

The assay is able to adequately separate isobaric analyte pairs such as NIC/ABS/NCOT and HCOT/CNO thus being suitable for the determination of tobacco alkaloids and their phase I metabolites from tissue. More autopsy cases as well as corresponding body fluids and hair samples will be investigated to differentiate smokers from nonsmokers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Monographs on the evaluation of carcinogenic risks to humans. (2004). Tobacco smoke and involuntary smoking. World Health Organization—International Agency for Research on Cancer, Lyon, France

  2. Jacob P 3rd, Yu L, Shulgin AT, Benowitz NL (1999) Minor tobacco alkaloids as biomarkers for tobacco use: comparison of users of cigarettes, smokeless tobacco, cigars, and pipes. Am J Public Health 89(5):731–736. doi:10.2105/AJPH.89.5.731

    Article  PubMed Central  PubMed  Google Scholar 

  3. Rodgman A, Perfetti TA (2013) The chemical components of tobacco and tobacco smoke, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  4. Hukkanen J, Jacob P 3rd, Benowitz NL (2005) Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57(1):79–115. doi:10.1124/pr.57.1.3

    Article  CAS  PubMed  Google Scholar 

  5. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem 75(13):3019–3030. doi:10.1021/ac020361s

    Article  CAS  PubMed  Google Scholar 

  6. Bansal S, DeStefano A (2007) Key elements of bioanalytical method validation for small molecules. AAPS J 9(1):E109–E114. doi:10.1208/aapsj0901011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. ICH harmonised tripartite guideline: validation of analytical procedures: text and methodology Q2(R1) (2005). International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, vol 4.

  8. FDA guidance for industry: bioanalytical method validation (2013). U.S. Department of Health and Human Services, Center for Drug Evaluation and Research, Food and Drug Administration.

  9. Nowatzke W, Woolf E (2007) Best practices during bioanalytical method validation for the characterization of assay reagents and the evaluation of analyte stability in assay standards, quality controls, and study samples. AAPS J 9(2):E117–E122. doi:10.1208/aapsj0902013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Almeida AM, Castel-Branco MM, Falcao AC (2002) Linear regression for calibration lines revisited: weighting schemes for bioanalytical methods. J Chromatogr B Anal Technol Biomed Life Sci 774(2):215–222. doi:10.1016/S1570-0232(02)00244-1

    Article  CAS  Google Scholar 

  11. Piller M, Gilch G, Scherer G, Scherer M (2014) Simple, fast and sensitive LC-MS/MS analysis for the simultaneous quantification of nicotine and 10 of its major metabolites. J Chromatogr B Anal Technol Biomed Life Sci 951–952:7–15. doi:10.1016/j.jchromb.2014.01.025

    Article  Google Scholar 

  12. Moyer TP, Charlson JR, Enger RJ, Dale LC, Ebbert JO, Schroeder DR, Hurt RD (2002) Simultaneous analysis of nicotine, nicotine metabolites, and tobacco alkaloids in serum or urine by tandem mass spectrometry, with clinically relevant metabolic profiles. Clin Chem 48(9):1460–1471

    CAS  PubMed  Google Scholar 

  13. Miller EI, Norris HR, Rollins DE, Tiffany ST, Moore CM, Vincent MJ, Agrawal A, Wilkins DG (2010) Identification and quantification of nicotine biomarkers in human oral fluid from individuals receiving low-dose transdermal nicotine: a preliminary study. J Anal Toxicol 34(7):357–366. doi:10.1093/jat/34.7.357

    Article  CAS  PubMed  Google Scholar 

  14. Himes SK, Stroud LR, Scheidweiler KB, Niaura RS, Huestis MA (2013) Prenatal tobacco exposure, biomarkers for tobacco in meconium, and neonatal growth outcomes. J Pediatr 162(5):970–975. doi:10.1016/j.jpeds.2012.10.045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Gray TR, Shakleya DM, Huestis MA (2008) Quantification of nicotine, cotinine, trans-3′-hydroxycotinine, nornicotine and norcotinine in human meconium by liquid chromatography/tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 863(1):107–114. doi:10.1016/j.jchromb.2008.01.001

    Article  CAS  Google Scholar 

  16. Heinrich J, Holscher B, Seiwert M, Carty CL, Merkel G, Schulz C (2005) Nicotine and cotinine in adults’ urine: the German Environmental Survey 1998. J Expo Anal Environ Epidemiol 15(1):74–80. doi:10.1038/sj.jea.7500373

    CAS  PubMed  Google Scholar 

  17. Jacob P 3rd, Hatsukami D, Severson H, Hall S, Yu L, Benowitz NL (2002) Anabasine and anatabine as biomarkers for tobacco use during nicotine replacement therapy. Cancer Epidemiol Biomarkers Prev 11(12):1668–1673

    CAS  PubMed  Google Scholar 

  18. Xu X, Iba MM, Weisel CP (2004) Simultaneous and sensitive measurement of anabasine, nicotine, and nicotine metabolites in human urine by liquid chromatography-tandem mass spectrometry. Clin Chem 50(12):2323–2330. doi:10.1373/clinchem.2004.038489

    Article  CAS  PubMed  Google Scholar 

  19. Miller EI, Norris HR, Rollins DE, Tiffany ST, Wilkins DG (2010) A novel validated procedure for the determination of nicotine, eight nicotine metabolites and two minor tobacco alkaloids in human plasma or urine by solid-phase extraction coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 878(9–10):725–737. doi:10.1016/j.jchromb.2009.12.018

    Article  CAS  Google Scholar 

  20. Vieira-Brock PL, Miller EI, Nielsen SM, Fleckenstein AE, Wilkins DG (2011) Simultaneous quantification of nicotine and metabolites in rat brain by liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 879(30):3465–3474. doi:10.1016/j.jchromb.2011.09.026

    Article  CAS  Google Scholar 

  21. De Cremer K, Van Overmeire I, Van Loco J (2013) On-line solid-phase extraction with ultra performance liquid chromatography and tandem mass spectrometry for the detection of nicotine, cotinine and trans-3′-hydroxycotinine in urine to strengthen human biomonitoring and smoking cessation studies. J Pharm Biomed Anal 76:126–133. doi:10.1016/j.jpba.2012.12.018

    Article  PubMed  Google Scholar 

  22. Domino EF, Hornbach E, Demana T (1993) The nicotine content of common vegetables. N Engl J Med 329(6):437. doi:10.1056/NEJM199308053290619

    Article  CAS  PubMed  Google Scholar 

  23. Zwickenpflug W, Meger M, Richter E (1998) Occurrence of the tobacco alkaloid myosmine in nuts and nut products of Arachus hypogaea and Corylus avellana. J Agric Food Chem 46:2703–2706. doi:10.1021/jf9801419

    Article  CAS  Google Scholar 

  24. Schutte-Borkovec K (2008) Vorkommen und Toxikokinetik von Myosmin in Abhängigkeit von Rauchen und Ernährung. Ludwigs-Maximilian-Universität, Munich

    Google Scholar 

  25. Patterer VM (2011) Vorkommen des Tabakalkaloids Myosmin bei Wiederkäuern. Ludwigs-Maximilians-Universität, Munich

    Google Scholar 

  26. Marclay F, Saugy M (2010) Determination of nicotine and nicotine metabolites in urine by hydrophilic interaction chromatography-tandem mass spectrometry: potential use of smokeless tobacco products by ice hockey players. J Chromatogr A 1217(48):7528–7538. doi:10.1016/j.chroma.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  27. Shakleya DM, Huestis MA (2009) Simultaneous quantification of nicotine, opioids, cocaine, and metabolites in human fetal postmortem brain by liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 393(8):1957–1965. doi:10.1007/s00216-009-2661-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Heavner DL, Richardson JD, Morgan WT, Ogden MW (2005) Validation and application of a method for the determination of nicotine and five major metabolites in smokers’ urine by solid-phase extraction and liquid chromatography-tandem mass spectrometry. Biomed Chromatogr 19(4):312–328. doi:10.1002/bmc.463

    Article  CAS  PubMed  Google Scholar 

  29. Grusz-Harday E (1967) Tödliche Nikotinvergiftungen. Arch Toxicol 23:35–41

    CAS  Google Scholar 

  30. Kemp PM, Sneed GS, George CE, Distefano RF (1997) Postmortem distribution of nicotine and cotinine from a case involving the simultaneous administration of multiple nicotine transdermal systems. J Anal Toxicol 21(4):310–313

    Article  CAS  PubMed  Google Scholar 

  31. Riah O, Courriere P, Dousset JC, Todeschi N, Labat C (1998) Nicotine is more efficient than cotinine at passing the blood–brain barrier in rats. Cell Mol Neurobiol 18(3):311–318

    Article  CAS  PubMed  Google Scholar 

  32. Kuswahyuning R, Roberts MS (2014) Concentration dependency in nicotine skin penetration flux from aqueous solutions reflects vehicle induced changes in nicotine stratum corneum retention. Pharm Res. doi:10.1007/s11095-013-1256-4

    PubMed  Google Scholar 

  33. Urakawa N, Nagata T, Kudo K, Kimura K, Imamura T (1994) Simultaneous determination of nicotine and cotinine in various human tissues using capillary gas chromatography/mass spectrometry. Int J Legal Med 106(5):232–236

    Article  CAS  PubMed  Google Scholar 

  34. Turner DM (1969) The metabolism of [14C] nicotine in the cat. Biochem J 115(5):889–896

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Booth J, Boyland E (1971) Enzymic oxidation of (−)-nicotine by guinea-pig tissues in vitro. Biochem Pharmacol 20(2):407–415

    Article  CAS  PubMed  Google Scholar 

  36. Leeds J, Turner DM (1977) Factors affecting the tissue binding of nicotine in various species. Biochem Pharmacol 26(17):1631–1635

    Article  CAS  PubMed  Google Scholar 

  37. Schutte-Borkovec K, Heppel CW, Heling AK, Richter E (2009) Analysis of myosmine, cotinine and nicotine in human toenail, plasma and saliva. Biomarkers 14(5):278–284. doi:10.1080/13547500902898164

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisela Skopp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, L., Mikus, F., Jantos, R. et al. Simultaneous quantification of tobacco alkaloids and major phase I metabolites by LC-MS/MS in human tissue. Int J Legal Med 129, 279–287 (2015). https://doi.org/10.1007/s00414-014-1093-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-014-1093-y

Keywords

Navigation