Skip to main content

Advertisement

Log in

Looping out of control: R-loops in transcription-replication conflict

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Transcription-replication conflict is a major cause of replication stress that arises when replication forks collide with the transcription machinery. Replication fork stalling at sites of transcription compromises chromosome replication fidelity and can induce DNA damage with potentially deleterious consequences for genome stability and organismal health. The block to DNA replication by the transcription machinery is complex and can involve stalled or elongating RNA polymerases, promoter-bound transcription factor complexes, or DNA topology constraints. In addition, studies over the past two decades have identified co-transcriptional R-loops as a major source for impairment of DNA replication forks at active genes. However, how R-loops impede DNA replication at the molecular level is incompletely understood. Current evidence suggests that RNA:DNA hybrids, DNA secondary structures, stalled RNA polymerases, and condensed chromatin states associated with R-loops contribute to the of fork progression. Moreover, since both R-loops and replication forks are intrinsically asymmetric structures, the outcome of R-loop-replisome collisions is influenced by collision orientation. Collectively, the data suggest that the impact of R-loops on DNA replication is highly dependent on their specific structural composition. Here, we will summarize our current understanding of the molecular basis for R-loop-induced replication fork progression defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Abakir A, Giles TC, Cristini A, Foster JM, Dai N, Starczak M, Rubio-Roldan A, Li M, Eleftheriou M, Crutchley J et al (2020) N(6)-methyladenosine regulates the stability of RNA:DNA hybrids in human cells. Nat Genet 52:48–55

    Article  CAS  PubMed  Google Scholar 

  • Abraham KJ, Khosraviani N, Chan JNY, Gorthi A, Samman A, Zhao DY, Wang M, Bokros M, Vidya E, Ostrowski LA et al (2020) Nucleolar RNA polymerase II drives ribosome biogenesis. Nature 585:298–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Achar YJ, Adhil M, Choudhary R, Gilbert N, Foiani M (2020) Negative supercoil at gene boundaries modulates gene topology. Nature 577:701–705

    Article  ADS  CAS  PubMed  Google Scholar 

  • Aiello U, Challal D, Wentzinger G, Lengronne A, Appanah R, Pasero P, Palancade B, Libri D (2022) Sen1 is a key regulator of transcription-driven conflicts. Mol Cell 82(2952-2966):e2956

    Google Scholar 

  • Alecki C, Chiwara V, Sanz LA, Grau D, Arias Perez O, Boulier EL, Armache KJ, Chedin F, Francis NJ (2020) RNA-DNA strand exchange by the Drosophila polycomb complex PRC2. Nat Commun 11:1781

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida R, Fernandez-Justel JM, Santa-Maria C, Cadoret JC, Cano-Aroca L, Lombrana R, Herranz G, Agresti A, Gomez M (2018) Chromatin conformation regulates the coordination between DNA replication and transcription. Nat Commun 9:1590

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Alzu A, Bermejo R, Begnis M, Lucca C, Piccini D, Carotenuto W, Saponaro M, Brambati A, Cocito A, Foiani M et al (2012) Senataxin associates with replication forks to protect fork integrity across RNA-polymerase-II-transcribed genes. Cell 151:835–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrs M, Stoy H, Boleslavska B, Chappidi N, Kanagaraj R, Nascakova Z, Menon S, Rao S, Oravetzova A, Dobrovolna J et al (2023) Excessive reactive oxygen species induce transcription-dependent replication stress. Nat Commun 14:1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appanah R, Lones EC, Aiello U, Libri D, De Piccoli G (2020) Sen1 is recruited to replication forks via Ctf4 and Mrc1 and promotes genome stability. Cell Rep 30(2094-2105):e2099

    Google Scholar 

  • Arab K, Karaulanov E, Musheev M, Trnka P, Schafer A, Grummt I, Niehrs C (2019) GADD45A binds R-loops and recruits TET1 to CpG island promoters. Nat Genet 51:217–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ariel F, Lucero L, Christ A, Mammarella MF, Jegu T, Veluchamy A, Mariappan K, Latrasse D, Blein T, Liu C et al (2020) R-loop mediated trans action of the APOLO long noncoding RNA. Mol Cell 77(1055-1065):e1054

    Google Scholar 

  • Azvolinsky A, Giresi PG, Lieb JD, Zakian VA (2009) Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol Cell 34:722–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacal J, Moriel-Carretero M, Pardo B, Barthe A, Sharma S, Chabes A, Lengronne A, Pasero P (2018) Mrc1 and Rad9 cooperate to regulate initiation and elongation of DNA replication in response to DNA damage. EMBO J 37

  • Barlow JH, Faryabi RB, Callen E, Wong N, Malhowski A, Chen HT, Gutierrez-Cruz G, Sun HW, McKinnon P, Wright G et al (2013) Identification of early replicating fragile sites that contribute to genome instability. Cell 152:620–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batra S, Devbhandari S, Remus D (2022) CMG helicase activity on G4-containing DNA templates. Methods Enzymol 672:233–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayona-Feliu A, Aguilera A (2021) The role of chromatin at transcription-replication conflicts as a genome safeguard. Biochem Soc Trans 49:2727–2736

    Article  CAS  PubMed  Google Scholar 

  • Belotserkovskii BP, Hanawalt PC (2022) Topology and kinetics of R-loop formation. Biophys J 121:3345–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentley DL (2014) Coupling mRNA processing with transcription in time and space. Nat Rev Genet 15:163–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bermejo R, Capra T, Jossen R, Colosio A, Frattini C, Carotenuto W, Cocito A, Doksani Y, Klein H, Gomez-Gonzalez B et al (2011) The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores. Cell 146:233–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernecky C, Herzog F, Baumeister W, Plitzko JM, Cramer P (2016) Structure of transcribing mammalian RNA polymerase II. Nature 529:551–554

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bonnet A, Grosso AR, Elkaoutari A, Coleno E, Presle A, Sridhara SC, Janbon G, Geli V, de Almeida SF, Palancade B (2017) Introns protect eukaryotic genomes from transcription-associated genetic instability. Mol Cell 67(608-621):e606

    Google Scholar 

  • Boque-Sastre R, Soler M, Oliveira-Mateos C, Portela A, Moutinho C, Sayols S, Villanueva A, Esteller M, Guil S (2015) Head-to-head antisense transcription and R-loop formation promotes transcriptional activation. Proc Natl Acad Sci U S A 112:5785–5790

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Boubakri H, de Septenville AL, Viguera E, Michel B (2010) The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. EMBO J 29:145–157

    Article  CAS  PubMed  Google Scholar 

  • Brewer BJ (1988) When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell 53:679–686

    Article  CAS  PubMed  Google Scholar 

  • Brickner JR, Garzon JL, Cimprich KA (2022) Walking a tightrope: the complex balancing act of R-loops in genome stability. Mol Cell 82:2267–2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruning JG, Marians KJ (2020) Replisome bypass of transcription complexes and R-loops. Nucleic Acids Res 48:10353–10367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruning JG, Marians KJ (2021) Bypass of complex co-directional replication-transcription collisions by replisome skipping. Nucleic Acids Res 49:9870–9885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34:5402–5415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellano-Pozo M, Santos-Pereira JM, Rondon AG, Barroso S, Andujar E, Perez-Alegre M, Garcia-Muse T, Aguilera A (2013) R loops are linked to histone H3 S10 phosphorylation and chromatin condensation. Mol Cell 52:583–590

    Article  CAS  PubMed  Google Scholar 

  • Castillo-Guzman D, Chedin F (2021) Defining R-loop classes and their contributions to genome instability. DNA Repair (Amst) 106:103182

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty P, Grosse F (2011) Human DHX9 helicase preferentially unwinds RNA-containing displacement loops (R-loops) and G-quadruplexes. DNA Repair (Amst) 10:654–665

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty P, Huang JTJ, Hiom K (2018) DHX9 helicase promotes R-loop formation in cells with impaired RNA splicing. Nat Commun 9:4346

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Chan YA, Aristizabal MJ, Lu PY, Luo Z, Hamza A, Kobor MS, Stirling PC, Hieter P (2014) Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-chip. PLoS Genet 10:e1004288

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandok GS, Patel MP, Mirkin SM, Krasilnikova MM (2012) Effects of Friedreich’s ataxia GAA repeats on DNA replication in mammalian cells. Nucleic Acids Res 40:3964–3974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chappidi N, Nascakova Z, Boleslavska B, Zellweger R, Isik E, Andrs M, Menon S, Dobrovolna J, Balbo Pogliano C, Matos J et al (2020) Fork cleavage-religation cycle and active transcription mediate replication restart after fork stalling at co-transcriptional R-loops. Mol Cell 77(528-541):e528

    Article  Google Scholar 

  • Chedin F, Benham CJ (2020) Emerging roles for R-loop structures in the management of topological stress. J Biol Chem 295:4684–4695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen PB, Chen HV, Acharya D, Rando OJ, Fazzio TG (2015) R loops regulate promoter-proximal chromatin architecture and cellular differentiation. Nat Struct Mol Biol 22:999–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Chen JY, Zhang X, Gu Y, Xiao R, Shao C, Tang P, Qian H, Luo D, Li H et al (2017) R-ChIP Using inactive RNase H reveals dynamic coupling of R-loops with transcriptional pausing at gene promoters. Mol Cell 68(745-757):e745

    Article  Google Scholar 

  • Chen YH, Keegan S, Kahli M, Tonzi P, Fenyo D, Huang TT, Smith DJ (2019) Transcription shapes DNA replication initiation and termination in human cells. Nat Struct Mol Biol 26:67–77

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhang C, Ma W, Huang J, Zhao Y, Liu H (2022) METTL3-mediated m6A modification stabilizes TERRA and maintains telomere stability. Nucleic Acids Res 50:11619–11634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiarle R, Zhang Y, Frock RL, Lewis SM, Molinie B, Ho YJ, Myers DR, Choi VW, Compagno M, Malkin DJ et al (2011) Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147:107–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong SY, Cutler S, Lin JJ, Tsai CH, Tsai HK, Biggins S, Tsukiyama T, Lo YC, Kao CF (2020) H3K4 methylation at active genes mitigates transcription-replication conflicts during replication stress. Nat Commun 11:809

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Claussin C, Vazquez J, Whitehouse I (2022) Single-molecule mapping of replisome progression. Mol Cell 82(1372-1382):e1374

    Google Scholar 

  • Cloutier SC, Wang S, Ma WK, Al Husini N, Dhoondia Z, Ansari A, Pascuzzi PE, Tran EJ (2016) Regulated formation of lncRNA-DNA hybrids enables faster transcriptional induction and environmental adaptation. Mol Cell 61:393–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costantino L, Koshland D (2018) Genome-wide map of R-loop-induced damage reveals how a subset of R-loops contributes to genomic instability. Mol Cell 71(487-497):e483

    Google Scholar 

  • Cristini A, Groh M, Kristiansen MS, Gromak N (2018) RNA/DNA Hybrid Interactome Identifies DXH9 as a Molecular Player in Transcriptional Termination and R-Loop-Associated DNA Damage. Cell Rep 23:1891–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cristini A, Ricci G, Britton S, Salimbeni S, Huang SN, Marinello J, Calsou P, Pommier Y, Favre G, Capranico G et al (2019) Dual processing of R-loops and topoisomerase I induces transcription-dependent DNA double-strand breaks. Cell Rep 28(3167-3181):e3166

    Google Scholar 

  • Cristini A, Tellier M, Constantinescu F, Accalai C, Albulescu LO, Heiringhoff R, Bery N, Sordet O, Murphy S, Gromak N (2022) RNase H2, mutated in Aicardi-Goutieres syndrome, resolves co-transcriptional R-loops to prevent DNA breaks and inflammation. Nat Commun 13:2961

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Crossley MP, Bocek MJ, Hamperl S, Swigut T, Cimprich KA (2020) qDRIP: a method to quantitatively assess RNA-DNA hybrid formation genome-wide. Nucleic Acids Res 48:e84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crossley MP, Song C, Bocek MJ, Choi JH, Kousorous J, Sathirachinda A, Lin C, Brickner JR, Bai G, Lans H et al (2023) R-loop-derived cytoplasmic RNA-DNA hybrids activate an immune response. Nature 613:187–194

    Article  ADS  CAS  PubMed  Google Scholar 

  • Dahan D, Tsirkas I, Dovrat D, Sparks MA, Singh SP, Galletto R, Aharoni A (2018) Pif1 is essential for efficient replisome progression through lagging strand G-quadruplex DNA secondary structures. Nucleic Acids Res 46:11847–11857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels GA, Lieber MR (1995) RNA:DNA complex formation upon transcription of immunoglobulin switch regions: implications for the mechanism and regulation of class switch recombination. Nucleic Acids Res 23:5006–5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Almeida CR, Dhir S, Dhir A, Moghaddam AE, Sattentau Q, Meinhart A, Proudfoot NJ (2018) RNA helicase DDX1 converts RNA G-quadruplex structures into R-loops to promote IgH class switch recombination. Mol Cell 70(650–662):e658

    Google Scholar 

  • De Magis A, Manzo SG, Russo M, Marinello J, Morigi R, Sordet O, Capranico G (2019) DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proc Natl Acad Sci U S A 116:816–825

    Article  ADS  PubMed  Google Scholar 

  • Deegan TD, Mukherjee PP, Fujisawa R, Polo Rivera C, Labib K (2020) CMG helicase disassembly is controlled by replication fork DNA, replisome components and a ubiquitin threshold. Elife 9

  • Deshpande AM, Newlon CS (1996) DNA replication fork pause sites dependent on transcription. Science 272:1030–1033

    Article  ADS  CAS  PubMed  Google Scholar 

  • Devbhandari S, Remus D (2020) Rad53 limits CMG helicase uncoupling from DNA synthesis at replication forks. Nat Struct Mol Biol 27:461–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drolet M, Bi X, Liu LF (1994) Hypernegative supercoiling of the DNA template during transcription elongation in vitro. J Biol Chem 269:2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Duch A, Felipe-Abrio I, Barroso S, Yaakov G, Garcia-Rubio M, Aguilera A, de Nadal E, Posas F (2013) Coordinated control of replication and transcription by a SAPK protects genomic integrity. Nature 493:116–119

    Article  ADS  PubMed  Google Scholar 

  • Duch A, Canal B, Barroso SI, Garcia-Rubio M, Seisenbacher G, Aguilera A, de Nadal E, Posas F (2018) Multiple signaling kinases target Mrc1 to prevent genomic instability triggered by transcription-replication conflicts. Nat Commun 9:379

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Dumelie JG, Jaffrey SR (2017) Defining the location of promoter-associated R-loops at near-nucleotide resolution using bisDRIP-seq. Elife 6

  • Duquette ML, Handa P, Vincent JA, Taylor AF, Maizels N (2004) Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev 18:1618–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta D, Shatalin K, Epshtein V, Gottesman ME, Nudler E (2011) Linking RNA polymerase backtracking to genome instability in E. coli. Cell 146:533–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Hage A, French SL, Beyer AL, Tollervey D (2010) Loss of topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev 24:1546–1558

    Article  PubMed  PubMed Central  Google Scholar 

  • Felipe-Abrio I, Lafuente-Barquero J, Garcia-Rubio ML, Aguilera A (2015) RNA polymerase II contributes to preventing transcription-mediated replication fork stalls. EMBO J 34:236–250

    Article  CAS  PubMed  Google Scholar 

  • Feretzaki M, Pospisilova M, Valador Fernandes R, Lunardi T, Krejci L, Lingner J (2020) RAD51-dependent recruitment of TERRA lncRNA to telomeres through R-loops. Nature 587:303–308

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Frattini C, Promonet A, Alghoul E, Vidal-Eychenie S, Lamarque M, Blanchard MP, Urbach S, Basbous J, Constantinou A (2021) TopBP1 assembles nuclear condensates to switch on ATR signaling. Mol Cell 81(1231-1245):e1238

    Google Scholar 

  • French S (1992) Consequences of replication fork movement through transcription units in vivo. Science 258:1362–1365

    Article  ADS  CAS  PubMed  Google Scholar 

  • Fu YV, Yardimci H, Long DT, Ho TV, Guainazzi A, Bermudez VP, Hurwitz J, van Oijen A, Scharer OD, Walter JC (2011) Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146:931–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan W, Guan Z, Liu J, Gui T, Shen K, Manley JL, Li X (2011) R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev 25:2041–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Muse T, Aguilera A (2019) R loops: from physiological to pathological roles. Cell 179:604–618

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichardo D, Canas JC, Garcia-Rubio ML, Gomez-Gonzalez B, Rondon AG, Aguilera A (2017) Histone mutants separate R loop formation from genome instability induction. Mol Cell 66(597-609):e595

    Google Scholar 

  • Garcia-Rubio M, Aguilera P, Lafuente-Barquero J, Ruiz JF, Simon MN, Geli V, Rondon AG, Aguilera A (2018) Yra1-bound RNA-DNA hybrids cause orientation-independent transcription-replication collisions and telomere instability. Genes Dev 32:965–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavalda S, Gallardo M, Luna R, Aguilera A (2013) R-loop mediated transcription-associated recombination in trf4Delta mutants reveals new links between RNA surveillance and genome integrity. PLoS One 8:e65541

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Gellon L, Kaushal S, Cebrian J, Lahiri M, Mirkin SM, Freudenreich CH (2019) Mrc1 and Tof1 prevent fragility and instability at long CAG repeats by their fork stabilizing function. Nucleic Acids Res 47:794–805

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt J, Bhalla AD, Butler JS, Puckett JW, Dervan PB, Rosenwaks Z, Napierala M (2016) Stalled DNA replication forks at the endogenous GAA repeats drive repeat expansion in Friedreich’s ataxia cells. Cell Rep 16:1218–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginno PA, Lott PL, Christensen HC, Korf I, Chedin F (2012) R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 45:814–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginno PA, Lim YW, Lott PL, Korf I, Chedin F (2013) GC skew at the 5′ and 3′ ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res 23:1590–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Gonzalez B, Aguilera A (2007) Activation-induced cytidine deaminase action is strongly stimulated by mutations of the THO complex. Proc Natl Acad Sci U S A 104:8409–8414

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-González B, Aguilera A (2019) Transcription-mediated replication hindrance: a major driver of genome instability. Genes Dev 33:1008–1026

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomez-Gonzalez B, Felipe-Abrio I, Aguilera A (2009) The S-phase checkpoint is required to respond to R-loops accumulated in THO mutants. Mol Cell Biol 29:5203–5213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabczyk E, Mancuso M, Sammarco MC (2007) A persistent RNA.DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro. Nucleic Acids Res 35:5351–5359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groh M, Lufino MM, Wade-Martins R, Gromak N (2014) R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet 10:e1004318

    Article  PubMed  PubMed Central  Google Scholar 

  • Grunseich C, Wang IX, Watts JA, Burdick JT, Guber RD, Zhu Z, Bruzel A, Lanman T, Chen K, Schindler AB et al (2018) Senataxin mutation reveals how R-loops promote transcription by blocking DNA methylation at gene promoters. Mol Cell 69(426-437):e427

    Google Scholar 

  • Guy CP, Atkinson J, Gupta MK, Mahdi AA, Gwynn EJ, Rudolph CJ, Moon PB, van Knippenberg IC, Cadman CJ, Dillingham MS et al (2009) Rep provides a second motor at the replisome to promote duplication of protein-bound DNA. Mol Cell 36:654–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamperl S, Bocek MJ, Saldivar JC, Swigut T, Cimprich KA (2017) Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. Cell 170(774-786):e719

    Google Scholar 

  • Hatchi E, Skourti-Stathaki K, Ventz S, Pinello L, Yen A, Kamieniarz-Gdula K, Dimitrov S, Pathania S, McKinney KM, Eaton ML et al (2015) BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol Cell 57:636–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins M, Dimude JU, Howard JAL, Smith AJ, Dillingham MS, Savery NJ, Rudolph CJ, McGlynn P (2019) Direct removal of RNA polymerase barriers to replication by accessory replicative helicases. Nucleic Acids Res 47:5100–5113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmrich A, Ballarino M, Tora L (2011) Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol Cell 44:966–977

    Article  CAS  PubMed  Google Scholar 

  • Herold S, Kalb J, Buchel G, Ade CP, Baluapuri A, Xu J, Koster J, Solvie D, Carstensen A, Klotz C et al (2019) Recruitment of BRCA1 limits MYCN-driven accumulation of stalled RNA polymerase. Nature 567:545–549

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodson C, van Twest S, Dylewska M, O'Rourke JJ, Tan W, Murphy VJ, Walia M, Abbouche L, Nieminuszczy J, Dunn E et al (2022) Branchpoint translocation by fork remodelers as a general mechanism of R-loop removal. Cell Rep 41:111749

    Article  CAS  PubMed  Google Scholar 

  • Huertas P, Aguilera A (2003) Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell 12:711–721

    Article  CAS  PubMed  Google Scholar 

  • Hyjek M, Figiel M, Nowotny M (2019) RNases H: structure and mechanism. DNA Repair (Amst) 84:102672

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Tomizawa J (1980) Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H. Proc Natl Acad Sci U S A 77:2450–2454

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivessa AS, Lenzmeier BA, Bessler JB, Goudsouzian LK, Schnakenberg SL, Zakian VA (2003) The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol Cell 12:1525–1536

    Article  CAS  PubMed  Google Scholar 

  • Jenkyn-Bedford M, Jones ML, Baris Y, Labib KPM, Cannone G, Yeeles JTP, Deegan TD (2021) A conserved mechanism for regulating replisome disassembly in eukaryotes. Nature 600:743–747

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadesch TR, Chamberlin MJ (1982) Studies of in vitro transcription by calf thymus RNA polymerase II using a novel duplex DNA template. J Biol Chem 257:5286–5295

    Article  CAS  PubMed  Google Scholar 

  • Kaminski N, Wondisford AR, Kwon Y, Lynskey ML, Bhargava R, Barroso-Gonzalez J, Garcia-Exposito L, He B, Xu M, Mellacheruvu D et al (2022) RAD51AP1 regulates ALT-HDR through chromatin-directed homeostasis of TERRA. Mol Cell 82(4001-4017):e4007

    Google Scholar 

  • Kang HJ, Cheon NY, Park H, Jeong GW, Ye BJ, Yoo EJ, Lee JH, Hur JH, Lee EA, Kim H et al (2021) TonEBP recognizes R-loops and initiates m6A RNA methylation for R-loop resolution. Nucleic Acids Res 49:269–284

    Article  CAS  PubMed  Google Scholar 

  • Kavlashvili T, Liu W, Mohamed TM, Cortez D, Dewar JM (2023) Replication fork uncoupling causes nascent strand degradation and fork reversal. Nat Struct Mol Biol 30:115–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim N, Abdulovic AL, Gealy R, Lippert MJ, Jinks-Robertson S (2007) Transcription-associated mutagenesis in yeast is directly proportional to the level of gene expression and influenced by the direction of DNA replication. DNA Repair (Amst) 6:1285–1296

    Article  CAS  PubMed  Google Scholar 

  • Kireeva ML, Komissarova N, Kashlev M (2000) Overextended RNA:DNA hybrid as a negative regulator of RNA polymerase II processivity. J Mol Biol 299:325–335

    Article  CAS  PubMed  Google Scholar 

  • Kose HB, Larsen NB, Duxin JP, Yardimci H (2019) Dynamics of the eukaryotic replicative helicase at lagging-strand protein barriers support the steric exclusion model. Cell Rep 26(2113-2125):e2116

    Google Scholar 

  • Kotsantis P, Silva LM, Irmscher S, Jones RM, Folkes L, Gromak N, Petermann E (2016) Increased global transcription activity as a mechanism of replication stress in cancer. Nat Commun 7:13087

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasilnikova MM, Mirkin SM (2004) Replication stalling at Friedreich's ataxia (GAA)n repeats in vivo. Mol Cell Biol 24:2286–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar C, Remus D (2022) A transcription-based approach to purify R-loop-containing plasmid DNA templates in vitro. STAR Protoc 4:101937

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar C, Batra S, Griffith JD, Remus D (2021) The interplay of RNA:DNA hybrid structure and G-quadruplexes determines the outcome of R-loop-replisome collisions. Elife 10

  • Lafuente-Barquero J, Garcia-Rubio ML, Martin-Alonso MS, Gomez-Gonzalez B, Aguilera A (2020) Harmful DNA:RNA hybrids are formed in cis and in a Rad51-independent manner. Elife 9

  • Lalonde M, Trauner M, Werner M, Hamperl S (2021) Consequences and resolution of transcription-replication conflicts. Life (Basel) 11

  • Landsverk HB, Sandquist LE, Bay LTE, Steurer B, Campsteijn C, Landsverk OJB, Marteijn JA, Petermann E, Trinkle-Mulcahy L, Syljuasen RG (2020) WDR82/PNUTS-PP1 prevents transcription-replication conflicts by promoting RNA polymerase II degradation on chromatin. Cell Rep 33:108469

    Article  CAS  PubMed  Google Scholar 

  • Lang KS, Merrikh H (2018) The clash of macromolecular titans: replication-transcription conflicts in bacteria. Annu Rev Microbiol 72:71–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang KS, Merrikh H (2021) Topological stress is responsible for the detrimental outcomes of head-on replication-transcription conflicts. Cell Rep 34:108797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang KS, Hall AN, Merrikh CN, Ragheb M, Tabakh H, Pollock AJ, Woodward JJ, Dreifus JE, Merrikh H (2017) Replication-transcription conflicts generate R-loops that orchestrate bacterial stress survival and pathogenesis. Cell 170(787-799):e718

    Google Scholar 

  • Laspata N, Kaur P, Mersaoui SY, Muoio D, Liu ZS, Bannister MH, Nguyen HD, Curry C, Pascal JM, Poirier GG et al (2023) PARP1 associates with R-loops to promote their resolution and genome stability. Nucleic Acids Res.

  • Laverde EE, Lai Y, Leng F, Balakrishnan L, Freudenreich CH, Liu Y (2020) R-loops promote trinucleotide repeat deletion through DNA base excision repair enzymatic activities. J Biol Chem 295:13902–13913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerner LK, Sale JE (2019) Replication of G Quadruplex DNA. Genes (Basel) 10

  • Li X, Manley JL (2005) Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122:365–378

    Article  CAS  PubMed  Google Scholar 

  • Lim YW, Sanz LA, Xu X, Hartono SR, Chedin F (2015) Genome-wide DNA hypomethylation and RNA:DNA hybrid accumulation in Aicardi-Goutieres syndrome. Elife 4

  • Lin Y, Dent SY, Wilson JH, Wells RD, Napierala M (2010) R loops stimulate genetic instability of CTG.CAG repeats. Proc Natl Acad Sci U S A 107:692–697

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lin WL, Chen JK, Wen X, He W, Zarceno GA, Chen Y, Chen S, Paull TT, Liu HW (2022) DDX18 prevents R-loop-induced DNA damage and genome instability via PARP-1. Cell Rep 40:111089

    Article  CAS  PubMed  Google Scholar 

  • Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci U S A 84:7024–7027

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Alberts BM (1995) Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. Science 267:1131–1137

    Article  ADS  CAS  PubMed  Google Scholar 

  • Liu B, Wong ML, Tinker RL, Geiduschek EP, Alberts BM (1993) The DNA replication fork can pass RNA polymerase without displacing the nascent transcript. Nature 366:33–39

    Article  ADS  CAS  PubMed  Google Scholar 

  • Liu W, Saito Y, Jackson J, Bhowmick R, Kanemaki MT, Vindigni A, Cortez D (2023) RAD51 bypasses the CMG helicase to promote replication fork reversal. Science 380:382–387

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lockhart A, Pires VB, Bento F, Kellner V, Luke-Glaser S, Yakoub G, Ulrich HD, Luke B (2019) RNase H1 and H2 are differentially regulated to process RNA-DNA hybrids. Cell Rep 29(2890-2900):e2895

    Google Scholar 

  • Loomis EW, Sanz LA, Chedin F, Hagerman PJ (2014) Transcription-associated R-loop formation across the human FMR1 CGG-repeat region. PLoS Genet 10:e1004294

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopes J, Piazza A, Bermejo R, Kriegsman B, Colosio A, Teulade-Fichou MP, Foiani M, Nicolas A (2011) G-quadruplex-induced instability during leading-strand replication. EMBO J 30:4033–4046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyu J, Shao R, Kwong Yung PY, Elsasser SJ (2022) Genome-wide mapping of G-quadruplex structures with CUT&Tag. Nucleic Acids Res 50:e13

    Article  CAS  PubMed  Google Scholar 

  • Malig M, Hartono SR, Giafaglione JM, Sanz LA, Chedin F (2020) Ultra-deep coverage single-molecule R-loop footprinting reveals principles of R-loop Formation. J Mol Biol 432:2271–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangiameli SM, Merrikh CN, Wiggins PA, Merrikh H (2017) Transcription leads to pervasive replisome instability in bacteria. Elife 6

  • Masse E, Drolet M (1999) Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling. J Biol Chem 274:16659–16664

    Article  CAS  PubMed  Google Scholar 

  • Matos DA, Zhang JM, Ouyang J, Nguyen HD, Genois MM, Zou L (2020) ATR protects the genome against R loops through a MUS81-triggered feedback loop. Mol Cell 77(514-527):e514

    Article  Google Scholar 

  • Mayer A, Landry HM, Churchman LS (2017) Pause & go: from the discovery of RNA polymerase pausing to its functional implications. Curr Opin Cell Biol 46:72–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClure AW, Diffley JF (2021) Rad53 checkpoint kinase regulation of DNA replication fork rate via Mrc1 phosphorylation. Elife 10

  • Mellor C, Perez C, Sale JE (2022) Creation and resolution of non-B-DNA structural impediments during replication. Crit Rev Biochem Mol Biol 57:412–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrikh H, Machon C, Grainger WH, Grossman AD, Soultanas P (2011) Co-directional replication-transcription conflicts lead to replication restart. Nature 470:554–557

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrikh CN, Brewer BJ, Merrikh H (2015) The B. subtilis accessory helicase PcrA facilitates DNA replication through transcription units. PLoS Genet 11:e1005289

    Article  PubMed  PubMed Central  Google Scholar 

  • Mersaoui SY, Yu Z, Coulombe Y, Karam M, Busatto FF, Masson JY, Richard S (2019) Arginine methylation of the DDX5 helicase RGG/RG motif by PRMT5 regulates resolution of RNA:DNA hybrids. EMBO J 38:e100986

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirkin EV, Mirkin SM (2005) Mechanisms of transcription-replication collisions in bacteria. Mol Cell Biol 25:888–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mischo HE, Gomez-Gonzalez B, Grzechnik P, Rondon AG, Wei W, Steinmetz L, Aguilera A, Proudfoot NJ (2011) Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol Cell 41:21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales JC, Richard P, Patidar PL, Motea EA, Dang TT, Manley JL, Boothman DA (2016) XRN2 links transcription termination to DNA damage and replication stress. PLoS Genet 12:e1006107

    Article  PubMed  PubMed Central  Google Scholar 

  • Mutreja K, Krietsch J, Hess J, Ursich S, Berti M, Roessler FK, Zellweger R, Patra M, Gasser G, Lopes M (2018) ATR-mediated global fork slowing and reversal assist fork traverse and prevent chromosomal breakage at DNA interstrand cross-links. Cell Rep 24(2629-2642):e2625

    Google Scholar 

  • Neil AJ, Liang MU, Khristich AN, Shah KA, Mirkin SM (2018) RNA-DNA hybrids promote the expansion of Friedreich's ataxia (GAA)n repeats via break-induced replication. Nucleic Acids Res 46:3487–3497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen VC, Clelland BW, Hockman DJ, Kujat-Choy SL, Mewhort HE, Schultz MC (2010) Replication stress checkpoint signaling controls tRNA gene transcription. Nat Struct Mol Biol 17:976–981

    Article  CAS  PubMed  Google Scholar 

  • Osmundson JS, Kumar J, Yeung R, Smith DJ (2017) Pif1-family helicases cooperatively suppress widespread replication-fork arrest at tRNA genes. Nat Struct Mol Biol 24:162–170

    Article  CAS  PubMed  Google Scholar 

  • Ouyang J, Yadav T, Zhang JM, Yang H, Rheinbay E, Guo H, Haber DA, Lan L, Zou L (2021) RNA transcripts stimulate homologous recombination by forming DR-loops. Nature 594:283–288

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Paeschke K, Capra JA, Zakian VA (2011) DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145:678–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parajuli S, Teasley DC, Murali B, Jackson J, Vindigni A, Stewart SA (2017) Human ribonuclease H1 resolves R-loops and thereby enables progression of the DNA replication fork. J Biol Chem 292:15216–15224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul S, Million-Weaver S, Chattopadhyay S, Sokurenko E, Merrikh H (2013) Accelerated gene evolution through replication-transcription conflicts. Nature 495:512–515

    Article  ADS  CAS  PubMed  Google Scholar 

  • Petermann E, Lan L, Zou L (2022) Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids. Nat Rev Mol Cell Biol 23:521–540

    Article  CAS  PubMed  Google Scholar 

  • Petryk N, Kahli M, d’Aubenton-Carafa Y, Jaszczyszyn Y, Shen Y, Silvain M, Thermes C, Chen CL, Hyrien O (2016) Replication landscape of the human genome. Nat Commun 7:10208

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Piazza A, Boule JB, Lopes J, Mingo K, Largy E, Teulade-Fichou MP, Nicolas A (2010) Genetic instability triggered by G-quadruplex interacting Phen-DC compounds in Saccharomyces cerevisiae. Nucleic Acids Res 38:4337–4348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piazza A, Serero A, Boule JB, Legoix-Ne P, Lopes J, Nicolas A (2012) Stimulation of gross chromosomal rearrangements by the human CEB1 and CEB25 minisatellites in Saccharomyces cerevisiae depends on G-quadruplexes or Cdc13. PLoS Genet 8:e1003033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piazza A, Adrian M, Samazan F, Heddi B, Hamon F, Serero A, Lopes J, Teulade-Fichou MP, Phan AT, Nicolas A (2015) Short loop length and high thermal stability determine genomic instability induced by G-quadruplex-forming minisatellites. EMBO J 34:1718–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piazza A, Cui X, Adrian M, Samazan F, Heddi B, Phan AT, Nicolas AG (2017) Non-Canonical G-quadruplexes cause the hCEB1 minisatellite instability in Saccharomyces cerevisiae. Elife 6

  • Poli J, Gerhold CB, Tosi A, Hustedt N, Seeber A, Sack R, Herzog F, Pasero P, Shimada K, Hopfner KP et al (2016) Mec1, INO80, and the PAF1 complex cooperate to limit transcription replication conflicts through RNAPII removal during replication stress. Genes Dev 30:337–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pomerantz RT, O'Donnell M (2008) The replisome uses mRNA as a primer after colliding with RNA polymerase. Nature 456:762–766

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Pomerantz RT, O’Donnell M (2010) Direct restart of a replication fork stalled by a head-on RNA polymerase. Science 327:590–592

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Postow L, Ullsperger C, Keller RW, Bustamante C, Vologodskii AV, Cozzarelli NR (2001) Positive torsional strain causes the formation of a four-way junction at replication forks. J Biol Chem 276:2790–2796

    Article  CAS  PubMed  Google Scholar 

  • Prado F, Aguilera A (2005) Impairment of replication fork progression mediates RNA polII transcription-associated recombination. EMBO J 24:1267–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Promonet A, Padioleau I, Liu Y, Sanz L, Biernacka A, Schmitz AL, Skrzypczak M, Sarrazin A, Mettling C, Rowicka M et al (2020) Topoisomerase 1 prevents replication stress at R-loop-enriched transcription termination sites. Nat Commun 11:3940

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Reaban ME, Griffin JA (1990) Induction of RNA-stabilized DNA conformers by transcription of an immunoglobulin switch region. Nature 348:342–344

    Article  ADS  CAS  PubMed  Google Scholar 

  • Reaban ME, Lebowitz J, Griffin JA (1994) Transcription induces the formation of a stable RNA.DNA hybrid in the immunoglobulin alpha switch region. J Biol Chem 269:21850–21857

    Article  CAS  PubMed  Google Scholar 

  • Reddy K, Tam M, Bowater RP, Barber M, Tomlinson M, Nichol Edamura K, Wang YH, Pearson CE (2011) Determinants of R-loop formation at convergent bidirectionally transcribed trinucleotide repeats. Nucleic Acids Res 39:1749–1762

    Article  CAS  PubMed  Google Scholar 

  • Ribeyre C, Lopes J, Boule JB, Piazza A, Guedin A, Zakian VA, Mergny JL, Nicolas A (2009) The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet 5:e1000475

    Article  PubMed  PubMed Central  Google Scholar 

  • Richard P, Manley JL (2017) R Loops and Links to Human Disease. J Mol Biol 429:3168–3180

    Article  CAS  PubMed  Google Scholar 

  • Richard P, Feng S, Manley JL (2013) A SUMO-dependent interaction between senataxin and the exosome, disrupted in the neurodegenerative disease AOA2, targets the exosome to sites of transcription-induced DNA damage. Genes Dev 27:2227–2232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y, Difilippantonio S, Bolland DJ, Chen HT, Corcoran AE, Nussenzweig A et al (2008) AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135:1028–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez R, Miller KM, Forment JV, Bradshaw CR, Nikan M, Britton S, Oelschlaegel T, Xhemalce B, Balasubramanian S, Jackson SP (2012) Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat Chem Biol 8:301–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy D, Lieber MR (2009) G clustering is important for the initiation of transcription-induced R-loops in vitro, whereas high G density without clustering is sufficient thereafter. Mol Cell Biol 29:3124–3133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy D, Yu K, Lieber MR (2008) Mechanism of R-loop formation at immunoglobulin class switch sequences. Mol Cell Biol 28:50–60

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Yang X, Huang SN, Agama K, Baechler SA, Sun Y, Zhang H, Saha LK, Su S, Jenkins LM et al (2022) Resolution of R-loops by topoisomerase III-beta (TOP3B) in coordination with the DEAD-box helicase DDX5. Cell Rep 40:111067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • San Martin-Alonso M, Soler-Oliva ME, Garcia-Rubio M, Garcia-Muse T, Aguilera A (2021) Harmful R-loops are prevented via different cell cycle-specific mechanisms. Nat Commun 12:4451

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Sankar TS, Wastuwidyaningtyas BD, Dong Y, Lewis SA, Wang JD (2016) The nature of mutations induced by replication-transcription collisions. Nature 535:178–181

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanz LA, Chedin F (2019) High-resolution, strand-specific R-loop mapping via S9.6-based DNA-RNA immunoprecipitation and high-throughput sequencing. Nat Protoc 14:1734–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanz LA, Hartono SR, Lim YW, Steyaert S, Rajpurkar A, Ginno PA, Xu X, Chedin F (2016) Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals. Mol Cell 63:167–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saponaro M, Kantidakis T, Mitter R, Kelly GP, Heron M, Williams H, Soding J, Stewart A, Svejstrup JQ (2014) RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. Cell 157:1037–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkies P, Reams C, Simpson LJ, Sale JE (2010) Epigenetic instability due to defective replication of structured DNA. Mol Cell 40:703–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato K, Martin-Pintado N, Post H, Altelaar M, Knipscheer P (2021) Multistep mechanism of G-quadruplex resolution during DNA replication. Sci Adv 7:eabf8653

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Seiler JA, Conti C, Syed A, Aladjem MI, Pommier Y (2007) The intra-S-phase checkpoint affects both DNA replication initiation and elongation: single-cell and -DNA fiber analyses. Mol Cell Biol 27:5806–5818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekedat MD, Fenyo D, Rogers RS, Tackett AJ, Aitchison JD, Chait BT (2010) GINS motion reveals replication fork progression is remarkably uniform throughout the yeast genome. Mol Syst Biol 6:353

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinkura R, Tian M, Smith M, Chua K, Fujiwara Y, Alt FW (2003) The influence of transcriptional orientation on endogenous switch region function. Nat Immunol 4:435–441

    Article  CAS  PubMed  Google Scholar 

  • Shivji MKK, Renaudin X, Williams CH, Venkitaraman AR (2018) BRCA2 regulates transcription elongation by RNA polymerase II to prevent R-loop accumulation. Cell Rep 22:1031–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla V, Samaniego-Castruita D, Dong Z, Gonzalez-Avalos E, Yan Q, Sarma K, Rao A (2022) TET deficiency perturbs mature B cell homeostasis and promotes oncogenesis associated with accumulation of G-quadruplex and R-loop structures. Nat Immunol 23:99–108

    Article  CAS  PubMed  Google Scholar 

  • Skourti-Stathaki K, Proudfoot NJ, Gromak N (2011) Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell 42:794–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skourti-Stathaki K, Kamieniarz-Gdula K, Proudfoot NJ (2014) R-loops induce repressive chromatin marks over mammalian gene terminators. Nature 516:436–439

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Skourti-Stathaki K, Torlai Triglia E, Warburton M, Voigt P, Bird A, Pombo A (2019) R-loops enhance polycomb repression at a subset of developmental regulator genes. Mol Cell 73(930-945):e934

    Google Scholar 

  • Sollier J, Stork CT, Garcia-Rubio ML, Paulsen RD, Aguilera A, Cimprich KA (2014) Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol Cell 56:777–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sordet O, Redon CE, Guirouilh-Barbat J, Smith S, Solier S, Douarre C, Conti C, Nakamura AJ, Das BB, Nicolas E et al (2009) Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks. EMBO Rep 10:887–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD (2010) Co-orientation of replication and transcription preserves genome integrity. PLoS Genet 6:e1000810

    Article  PubMed  PubMed Central  Google Scholar 

  • Stolz R, Sulthana S, Hartono SR, Malig M, Benham CJ, Chedin F (2019) Interplay between DNA sequence and negative superhelicity drives R-loop structures. Proc Natl Acad Sci U S A 116:6260–6269

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Stork CT, Bocek M, Crossley MP, Sollier J, Sanz LA, Chedin F, Swigut T, Cimprich KA (2016) Co-transcriptional R-loops are the main cause of estrogen-induced DNA damage. Elife 5

  • Stoy H, Zwicky K, Kuster D, Lang KS, Krietsch J, Crossley MP, Schmid JA, Cimprich KA, Merrikh H, Lopes M (2023) Direct visualization of transcription-replication conflicts reveals post-replicative DNA:RNA hybrids. Nat Struct Mol Biol.

  • Su XA, Freudenreich CH (2017) Cytosine deamination and base excision repair cause R-loop-induced CAG repeat fragility and instability in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 114:E8392–E8401

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Svikovic S, Crisp A, Tan-Wong SM, Guilliam TA, Doherty AJ, Proudfoot NJ, Guilbaud G, Sale JE (2019) R-loop formation during S phase is restricted by PrimPol-mediated repriming. EMBO J 38

  • Takeuchi Y, Horiuchi T, Kobayashi T (2003) Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev 17:1497–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taneja N, Zofall M, Balachandran V, Thillainadesan G, Sugiyama T, Wheeler D, Zhou M, Grewal SI (2017) SNF2 family protein Fft3 suppresses nucleosome turnover to promote epigenetic inheritance and proper replication. Mol Cell 66(50-62):e56

    Google Scholar 

  • Tan-Wong SM, Dhir S, Proudfoot NJ (2019) R-loops promote antisense transcription across the mammalian genome. Mol Cell 76(600-616):e606

    Google Scholar 

  • Taylor MRG, Yeeles JTP (2018) The initial response of a eukaryotic replisome to DNA damage. Mol Cell 70(1067-1080):e1012

    Google Scholar 

  • Thomas M, White RL, Davis RW (1976) Hybridization of RNA to double-stranded DNA: formation of R-loops. Proc Natl Acad Sci U S A 73:2294–2298

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian M, Alt FW (2000) Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J Biol Chem 275:24163–24172

    Article  CAS  PubMed  Google Scholar 

  • Tran PLT, Pohl TJ, Chen CF, Chan A, Pott S, Zakian VA (2017) PIF1 family DNA helicases suppress R-loop mediated genome instability at tRNA genes. Nat Commun 8:15025

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Tresini M, Warmerdam DO, Kolovos P, Snijder L, Vrouwe MG, Demmers JA et al (2015) The core spliceosome as target and effector of non-canonical ATM signalling. Nature 523:53–58

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsirkas I, Dovrat D, Thangaraj M, Brouwer I, Cohen A, Paleiov Z, Meijler MM, Lenstra T, Aharoni A (2022) Transcription-replication coordination revealed in single live cells. Nucleic Acids Res 50:2143–2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuduri S, Crabbe L, Conti C, Tourriere H, Holtgreve-Grez H, Jauch A, Pantesco V, De Vos J, Thomas A, Theillet C et al (2009) Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat Cell Biol 11:1315–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulsamer A, Martinez-Limon A, Bader S, Rodriguez-Acebes S, Freire R, Mendez J, de Nadal E, Posas F (2022) Regulation of claspin by the p38 stress-activated protein kinase protects cells from DNA damage. Cell Rep 40:111375

    Article  CAS  PubMed  Google Scholar 

  • Urban V, Dobrovolna J, Huhn D, Fryzelkova J, Bartek J, Janscak P (2016) RECQ5 helicase promotes resolution of conflicts between replication and transcription in human cells. J Cell Biol 214:401–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urrutia-Irazabal I, Ault JR, Sobott F, Savery NJ, Dillingham MS (2021) Analysis of the PcrA-RNA polymerase complex reveals a helicase interaction motif and a role for PcrA/UvrD helicase in the suppression of R-loops. Elife 10

  • Vassylyev DG, Vassylyeva MN, Perederina A, Tahirov TH, Artsimovitch I (2007) Structural basis for transcription elongation by bacterial RNA polymerase. Nature 448:157–162

    Article  ADS  CAS  PubMed  Google Scholar 

  • Vrtis KB, Dewar JM, Chistol G, Wu RA, Graham TGW, Walter JC (2021) Single-strand DNA breaks cause replisome disassembly. Mol Cell 81(1309-1318):e1306

    Google Scholar 

  • Vujanovic M, Krietsch J, Raso MC, Terraneo N, Zellweger R, Schmid JA, Taglialatela A, Huang JW, Holland CL, Zwicky K et al (2017) Replication fork slowing and reversal upon DNA damage require PCNA polyubiquitination and ZRANB3 DNA translocase activity. Mol Cell 67(882-890):e885

    Google Scholar 

  • Wahba L, Gore SK, Koshland D (2013) The homologous recombination machinery modulates the formation of RNA-DNA hybrids and associated chromosome instability. Elife 2:e00505

    Article  PubMed  PubMed Central  Google Scholar 

  • Wahba L, Costantino L, Tan FJ, Zimmer A, Koshland D (2016) S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation. Genes Dev 30:1327–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JD, Berkmen MB, Grossman AD (2007) Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis. Proc Natl Acad Sci U S A 104:5608–5613

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang IX, Grunseich C, Fox J, Burdick J, Zhu Z, Ravazian N, Hafner M, Cheung VG (2018) Human proteins that interact with RNA/DNA hybrids. Genome Res 28:1405–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Wang H, Li C, Yin Z, Xiao R, Li Q, Xiang Y, Wang W, Huang J, Chen L et al (2021) Genomic profiling of native R loops with a DNA-RNA hybrid recognition sensor. Sci Adv 7

  • Wellinger RE, Prado F, Aguilera A (2006) Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex. Mol Cell Biol 26:3327–3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells JP, White J, Stirling PC (2019) R loops and their composite cancer connections. Trends Cancer 5:619–631

    Article  CAS  PubMed  Google Scholar 

  • Wulfridge P, Sarma K (2021) A nuclease- and bisulfite-based strategy captures strand-specific R-loops genome-wide. Elife 10

  • Westover KD, Bushnell DA, Kornberg RD (2004) Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Science 303:1014–1016

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wu T, Nance J, Chu F, Fazzio TG (2021) Characterization of R-loop-interacting proteins in embryonic stem cells reveals roles in rRNA processing and gene expression. Mol Cell Proteomics 20:100142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Xu H, Li K, Fan Y, Liu Y, Yang X, Sun Q (2017) The R-loop is a common chromatin feature of the Arabidopsis genome. Nat Plants 3:704–714

    Article  CAS  PubMed  Google Scholar 

  • Yadav T, Zhang JM, Ouyang J, Leung W, Simoneau A, Zou L (2022) TERRA and RAD51AP1 promote alternative lengthening of telomeres through an R- to D-loop switch. Mol Cell 82(3985-4000):e3984

    Google Scholar 

  • Yan Q, Shields EJ, Bonasio R, Sarma K (2019) Mapping native R-loops genome-wide using a targeted nuclease approach. Cell Rep 29(1369-1380):e1365

    Google Scholar 

  • Yan Q, Wulfridge P, Doherty J, Fernandez-Luna JL, Real PJ, Tang HY, Sarma K (2022) Proximity labeling identifies a repertoire of site-specific R-loop modulators. Nat Commun 13:53

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung R, Smith DJ (2020) Determinants of replication-fork pausing at tRNA genes in Saccharomyces cerevisiae. Genetics 214:825–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu K, Chedin F, Hsieh CL, Wilson TE, Lieber MR (2003) R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol 4:442–451

    Article  CAS  PubMed  Google Scholar 

  • Zardoni L, Nardini E, Brambati A, Lucca C, Choudhary R, Loperfido F, Sabbioneda S, Liberi G (2021) Elongating RNA polymerase II and RNA:DNA hybrids hinder fork progression and gene expression at sites of head-on replication-transcription collisions. Nucleic Acids Res 49:12769–12784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zatreanu D, Han Z, Mitter R, Tumini E, Williams H, Gregersen L, Dirac-Svejstrup AB, Roma S, Stewart A, Aguilera A et al (2019) Elongation factor TFIIS prevents transcription stress and R-loop accumulation to maintain genome stability. Mol Cell 76(57-69):e59

    Google Scholar 

  • Zeller P, Padeken J, van Schendel R, Kalck V, Tijsterman M, Gasser SM (2016) Histone H3K9 methylation is dispensable for Caenorhabditis elegans development but suppresses RNA:DNA hybrid-associated repeat instability. Nat Genet 48:1385–1395

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Chiang HC, Wang Y, Zhang C, Smith S, Zhao X, Nair SJ, Michalek J, Jatoi I, Lautner M et al (2017) Attenuation of RNA polymerase II pausing mitigates BRCA1-associated R-loop accumulation and tumorigenesis. Nat Commun 8:15908

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Zhu M, Limbo O, Russell P (2018) RNase H eliminates R-loops that disrupt DNA replication but is nonessential for efficient DSB repair. EMBO Rep 19

  • Zimmer AD, Koshland D (2016) Differential roles of the RNases H in preventing chromosome instability. Proc Natl Acad Sci U S A 113:12220–12225

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Work in the Remus lab is funded by NIGMS grants R01-GM107239 and R01-GM127428, and NIH-NCI Cancer Center Support Grant P30 CA008748.

Author information

Authors and Affiliations

Authors

Contributions

Charanya Kumar and Dirk Remus wrote and edited the manuscript.

Corresponding author

Correspondence to Dirk Remus.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, C., Remus, D. Looping out of control: R-loops in transcription-replication conflict. Chromosoma 133, 37–56 (2024). https://doi.org/10.1007/s00412-023-00804-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-023-00804-8

Keywords

Navigation