Skip to main content
Log in

Post-translational modifications of the intrinsically disordered terminal domains of histone H1: effects on secondary structure and chromatin dynamics

  • Mini-Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

H1 linker histones are involved both in the maintenance of chromatin higher-order structure and in gene regulation. H1 binds to linker DNA regions on the surface of the nucleosome. In higher eukaryotes, H1 contains three distinct domains: a short N-terminal domain (NTD), a central globular domain, and a long C-terminal domain (CTD). Terminal domains determine subtype specificity and to a large extent the linker DNA binding and chromatin condensing properties of histone H1. This review is focused on the recent numerous studies that have provided insights in the role of H1 terminal domains in chromatin dynamics. The N- and C-terminal domains behave as intrinsically disordered proteins with coupled binding and folding. We examine the potential kinetic advantages of intrinsic disorder in the recognition of the specific H1 binding sites in chromatin. As typical intrinsically disordered regions, H1 terminal domains are post-translationally modified. Post-translational modifications in the NTD determine the interaction of histone H1 with other proteins involved in heterochromatin formation and transcriptional regulation, while phosphorylation by cyclin-dependent kinases modulates the secondary structure of the CTD and chromatin condensation. We review the arguments in favor of the involvement of H1 hyperphosphorylation in metaphase chromatin condensation and of partial phosphorylation in interphase chromatin relaxation. In addition, the interplay of histone H1 and other chromatin architectural proteins, such as proteins of the high-mobility group, protamines, and MeCP2, is associated with changes in chromatin structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams VH, McBryant SJ, Wade PA, Woodcock CL, Hansen JC (2007) Intrinsic disorder and autonomous domain function in the multifunctional nuclear protein, MeCP2. Journal of Biological Chemistry 282:15057–15064

    Article  CAS  PubMed  Google Scholar 

  • An W, van Holde K, Zlatanova J (1998) The non-histone chromatin protein HMG1 protects linker DNA on the side opposite to that protected by linker histones. Journal of Biological Chemistry 273:26289–26291

    Article  CAS  PubMed  Google Scholar 

  • Bednar J, Horowitz RA, Grigoryev SA, Carruthers LM, Hansen JC, Koster AJ, Woodcock CL (1998) Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proceedings of the National Academy of Sciences of the United States of America 95:14173–14178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown DT, Izard T, Misteli T (2006) Mapping the interaction surface of linker histone H1(0) with the nucleosome of native chromatin in vivo. Nature Structural and Molecular Biology 13:250–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castaño J, Morera C, Sesé B, Boue S, Bonet-Costa C, Martí M, Roque A, Jordan A, Barrero MJ (2016) SETD7 regulates the differentiation of human embryonic stem cells. PLoS One 11:e0149502

    Article  PubMed  PubMed Central  Google Scholar 

  • Caterino TL, Fang H, Hayes JJ (2011) Nucleosome linker DNA contacts and induces specific folding of the intrinsically disordered H1 carboxyl-terminal domain. Molecular and Cellular Biology 31:2341–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catez F, Yang H, Tracey KJ, Reeves R, Misteli T, Bustin M (2004) Network of dynamic interactions between histone H1 and high-mobility-group proteins in chromatin. Molecular and Cellular Biology 24:4321–4328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catez F, Ueda T, Bustin M (2006) Determinants of histone H1 mobility and chromatin binding in living cells. Nature Structural and Molecular Biology 13:305–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cato L, Stott K, Watson M, Thomas JO (2008) The interaction of HMGB1 and linker histones occurs through their acidic and basic tails. Journal of Molecular Biology 384:1262–1272

    Article  CAS  PubMed  Google Scholar 

  • Chu CS, Hsu PH, Lo PW, Scheer E, Tora L, Tsai HJ, Tsai MD, Juan LJ (2011) Protein kinase A-mediated serine 35 phosphorylation dissociates histone H1.4 from mitotic chromosome. Journal of Biological Chemistry 286:35843–35851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras A, Hale TK, Stenoien DL, Rosen JM, Mancini MA, Herrera RE (2003) The dynamic mobility of histone H1 is regulated by cyclin/CDK phosphorylation. Molecular and Cellular Biology 23:8626–8636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daujat S, Zeissler U, Waldmann T, Happel N, Schneider R (2005) HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding. Journal of Biological Chemistry 280:38090–38095

    Article  CAS  PubMed  Google Scholar 

  • Doenecke D, Albig W, Bode C, Drabent B, Franke K, Gavenis K, Witt O (1997) Histones: genetic diversity and tissue-specific gene expression. Histochemistry and Cell Biology 107:1–10

    Article  CAS  PubMed  Google Scholar 

  • Drabent B, Bode C, Doenecke D (1993) Structure and expression of the mouse testicular H1 histone gene (H1t). Biochimica et Biophysica Acta 1216:311–313

    Article  CAS  PubMed  Google Scholar 

  • Eisert RJ, Kennedy SA, Waters ML (2015) Investigation of the β-sheet interactions between dHP1 chromodomain and histone 3. Biochemistry 54:2314–2322

    Article  CAS  PubMed  Google Scholar 

  • Fang H, Clark DJ, Hayes JJ (2012) DNA and nucleosomes direct distinct folding of a linker histone H1 C-terminal domain. Nucleic Acids Research 40:1475–1484

    Article  CAS  PubMed  Google Scholar 

  • Fischle WL, Franz H, Jacobs JA, Allis CD, Khorasanizadeh S (2008) Specificity of the chromodomain Y chromosome family of chromodomains for lysine-methylated ARK(S/T) motifs. Journal of Biological Chemistry 283:19626–19635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flanagan TW, Brown DT (2016) Molecular dynamics of histone H1. Biochimica et Biophysica Acta 1859:468–475

    Article  CAS  PubMed  Google Scholar 

  • Flanagan TW, Files JK, Casano KR, George EM, Brown DT (2016) Photobleaching studies reveal that a single amino acid polymorphism is responsible for the differential binding affinities of linker histone subtypes H1.1 and H1.5. Biology Open. doi:10.1242/bio.016733

    PubMed  PubMed Central  Google Scholar 

  • Ghosh RP, Nikitina T, Horowitz-Scherer RA, Gierasch LM, Uversky VN, Hite K, Hansen JC, Woodcock CL (2010) Unique physical properties and interactions of the domains of methylated DNA binding protein 2. Biochemistry 49:4395–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigoryev SA, Bascom G, Buckwalter JM, Schubert MB, Woodcock CL, Schlick T (2016) Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes. Proceedings of the National Academy of Sciences of the United States of America 113:1238–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurley LR, Valdez JG, Buchanan JS (1995) Characterization of the mitotic specific phosphorylation site of histone H1. Absence of a consensus sequence for the p34cdc2/cyclin B kinase. Journal of Biological Chemistry 270:27653–27660

    Article  CAS  PubMed  Google Scholar 

  • Hansen JC, Lu X, Ross ED, Woody RW (2006) Intrinsic protein disorder, amino acid composition, and histone terminal domains. Journal of Biological Chemistry 281:1853–1856

    Article  CAS  PubMed  Google Scholar 

  • Happel N, Stoldt S, Schmidt B, Doenecke D (2009) M phase-specific phosphorylation of histone H1.5 at threonine 10 by GSK-3. Journal of Molecular Biology 386:339–350

    Article  CAS  PubMed  Google Scholar 

  • Hergeth SP, Dundr M, Tropberger P, Zee BM, Garcia BA, Daujat S, Schneider R (2011) Isoform-specific phosphorylation of human linker histone H1.4 in mitosis by the kinase Aurora B. Journal of Cell Science 124:1623–1628

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson JB, Cheema MS, Wang J, Missiaen K, Finn R, Gonzalez Romero R, Th’ng JP, Hendzel M, Ausió J (2015) Interaction of chromatin with a histone H1 containing swapped N- and C-terminal domains. Bioscience Reports 35(3)

  • Izzo A, Schneider R (2016) The role of linker histone H1 modifications in the regulation of gene expression and chromatin dynamics. Biochimica et Biophysica Acta 1859:486–95

    Article  PubMed  Google Scholar 

  • Izzo A, Kamieniarz-Gdula K, Ramírez F, Noureen N, Kind J, Manke T, van Steensel B, Schneider R (2013) The genomic landscape of the somatic linker histone subtypes H1.1 to H1.5 in human cells. Cell Reports 3:2142–2154

    Article  CAS  PubMed  Google Scholar 

  • Jacobs SA, Khorasanizadeh S (2002) Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295:2080–2083

    Article  CAS  PubMed  Google Scholar 

  • Kalashnikova AA, Winkler DD, McBryant SJ, Henderson RK, Herman JA, Deluca JG, Luger K, Prenni JE, Hansen JC (2013) Linker histone H1.0 interacts with an extensive network of proteins found in the nucleolus. Nucleic Acids Research 41:4026–4035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamieniarz K, Izzo A, Dundr M, Tropberger P, Ozretic L, Kirfel J, Scheer E, Tropel P, Wisniewski JR, Tora L, Viville S, Buettner R, Schneider R (2012) A dual role of linker histone H1.4 Lys 34 acetylation in transcriptional activation. Genes and Development 26:797–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalski A, Pałyga J (2012) Linker histone subtypes and their allelic variants. Cell Biology International 36:981–996

    Article  CAS  PubMed  Google Scholar 

  • Lennox RW, Cohen LH (1984) The alterations in H1 histone complement during mouse spermatogenesis and their significance for H1 subtype function. Developmental Biology 103:80–84

    Article  CAS  PubMed  Google Scholar 

  • Lever MA, Th’ng JP, Sun X, Hendzel MJ (2000) Rapid exchange of histone H1.1 on chromatin in living human cells. Nature 408:873–876

    Article  CAS  PubMed  Google Scholar 

  • Liao R, Mizzen CA (2016) Interphase H1 phosphorylation: regulation and functions in chromatin. Biochimica et Biophysica Acta 1859:476–85

    Article  CAS  PubMed  Google Scholar 

  • Lopez R, Sarg B, Lindner H, Bartolomé S, Ponte I, Suau P, Roque A (2015) Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation. Nucleic Acids Research 43:4463–4476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Hansen JC (2004) Identification of specific functional subdomains within the linker histone H10 C-terminal domain. Journal of Biological Chemistry 279:8701–8707

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Hamkalo B, Parseghian MH, Hansen JC (2009) Chromatin condensing functions of the linker histone C-terminal domain are mediated by specific amino acid composition and intrinsic protein disorder. Biochemistry 48:164–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luque A, Collepardo-Guevara R, Grigoryev S, Schlick T (2014) Dynamic condensation of linker histone C-terminal domain regulates chromatin structure. Nucleic Acids Research 42:7553–7560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martianov I, Brancorsini S, Catena R, Gansmuller A, Kotaja N, Parvinen M, Sassone-Corsi P, Davidson I (2005) Polar nuclear localization of H1T2, a histone H1 variant, required for spermatid elongation and DNA condensation during spermiogenesis. Proceedings of the National Academy of Sciences of the United States of America 102:2808–2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayor R, Izquierdo-Bouldstridge A, Millan-Arino L, Bustillos A, Sampaio C, Luque N, Jordan A (2015) Genome distribution of replication-independent histone H1 variants shows H1.0 associated with nucleolar domains and H1X associated with RNA polymerase II-enriched regions. Journal of Biological Chemistry 290:7474–7491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBryant SJ, Adams VH, Hansen JC (2006) Chromatin architectural proteins. Chromosome Research 14:39–51

    Article  CAS  PubMed  Google Scholar 

  • Meyer S, Becker NB, Syed SH, Goutte-Gattat D, Shukla MS, Hayes JJ, Angelov D, Bednar J, Dimitrov S, Everaers R (2011) From crystal and NMR structures, footprints and cryo-electron-micrographs to large and soft structures: nanoscale modeling of the nucleosomal stem. Nucleic Acids Research 39:9139–9154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millán-Ariño L, Izquierdo-Bouldstridge A, Jordan A (2016) Specificities and genomic distribution of somatic mammalian histone H1 subtypes. Biochimica et Biophysica Acta 1859:510–519

    Article  PubMed  Google Scholar 

  • Misteli T, Gunjan A, Hock R, Bustin M, Brown DT (2000) Dynamic binding of histone H1 to chromatin in living cells. Nature 408:877–881

    Article  CAS  PubMed  Google Scholar 

  • Nightingale K, Dimitrov S, Reeves R, Wolffe AP (1996) Evidence for a shared structural role for HMG1 and linker histones B4 and H1 in organizing chromatin. EMBO Journal 15:548–561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nikitina T, Ghosh RP, Horowitz-Scherer RA, Hansen JC, Grigoryev SA, Woodcock CL (2007) MeCP2-chromatin interactions include the formation of chromatosome-like structures and are altered in mutations causing Rett syndrome. Journal of Biological Chemistry 282:28237–28245

    Article  CAS  PubMed  Google Scholar 

  • Öberg C, Belikov S (2012) The N-terminal domain determines the affinity and specificity of H1 binding to chromatin. Biochemical and Biophysical Research Communications 420:321–324

    Article  PubMed  Google Scholar 

  • Parseghian MH (2015) What is the role of histone H1 heterogeneity? A functional model emerges from a 50 year mystery. AIMS Biophysics 2:724–772

    Article  Google Scholar 

  • Ponte I, Vidal-Taboada JM, Suau P (1998) Evolution of the vertebrate H1 histone class: evidence for the functional differentiation of the subtypes. Molecular and Biological Evolution 15:702–708

    Article  CAS  Google Scholar 

  • Postnikov Y, Bustin M (2010) Regulation of chromatin structure and function by HMGN proteins. Biochimica et Biophysica Acta 1799:62–68

    Article  CAS  PubMed  Google Scholar 

  • Postnikov YV, Bustin M (2016) Functional interplay between histone H1 and HMG proteins in chromatin. Biochimica et Biophysica Acta 1859:462–467

    Article  CAS  PubMed  Google Scholar 

  • Raghuram N, Carrero G, Th’ng J, Hendzel MJ (2009) Molecular dynamics of histone H1. Biochemistry and Cell Biology 87:189–206

    Article  CAS  PubMed  Google Scholar 

  • Raghuram N, Strickfaden H, McDonald D, Williams K, Fang H, Mizzen C, Hayes JJ, Th’ng JP, Hendzel MJ (2013) Pin1 promotes histone H1 dephosphorylation and stabilizes its binding to chromatin. Journal of Cell Biology 203:57–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roque A, Iloro I, Ponte I, Arrondo JL, Suau P (2005) DNA-induced secondary structure of the carboxyl-terminal domain of histone H1. Journal of Biological Chemistry 280:32141–32147

    Article  CAS  PubMed  Google Scholar 

  • Roque A, Ponte I, Suau P (2007) Macromolecular crowding induces a molten globule state in the C-terminal domain of histone H1. Biophysical Journal 93:2170–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roque A, Ponte I, Arrondo JL, Suau P (2008) Phosphorylation of the carboxy-terminal domain of histone H1: effects on secondary structure and DNA condensation. Nucleic Acids Research 36:4719–4726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roque A, Ponte I, Suau P (2009) Role of charge neutralization in the folding of the carboxy-terminal domain of histone H1. Journal of Physical Chemistry B 113:12061–12066

    Article  CAS  Google Scholar 

  • Roque A, Ponte I, Suau P (2016) Interplay between histone H1 structure and function. Biochimica et Biophysica Acta 1859:444–454

    Article  CAS  PubMed  Google Scholar 

  • Roth SY, Allis CD (1992) Chromatin condensation: does histone H1 dephosphorylation play a role? Trends in Biochemical Sciences 17:93–98

    Article  CAS  PubMed  Google Scholar 

  • Saitoh Y, Laemmli UK (1994) Metaphase chromosome structure: bands arise from a differential folding path of the highly AT-rich scaffold. Cell 76:609–622

    Article  CAS  PubMed  Google Scholar 

  • Sarg B, Helliger W, Talasz H, Förg B, Lindner HH (2006) Histone H1 phosphorylation occurs site-specifically during interphase and mitosis: identification of a novel phosphorylation site on histone H1. Journal of Biological Chemistry 281:6573–6580

    Article  CAS  PubMed  Google Scholar 

  • Sarg B, Chwatal S, Talasz H, Lindner HH (2009) Testis-specific linker histone H1t is multiply phosphorylated during spermatogenesis. Identification of phosphorylation sites. Journal of Biological Chemistry 284:3610–3618

    Article  CAS  PubMed  Google Scholar 

  • Sassone-Corsi P (2002) Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296:2176–2178

    Article  CAS  PubMed  Google Scholar 

  • Shintomi K, Takahashi TS, Hirano T (2015) Reconstitution of mitotic chromatids with a minimum set of purified factors. Nature Cell Biology 17:1014–1023

    Article  CAS  PubMed  Google Scholar 

  • Skene PJ, Illingworth RS, Webb S, Kerr AR, James KD, Turner DJ, Andrews R, Bird AP (2010) Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Molecular Cell 37:457–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stasevich TJ, Mueller F, Brown DT, McNally JG (2010) Dissecting the binding mechanism of the linker histone in live cells: an integrated FRAP analysis. EMBO Journal 29:1225–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syed SH, Goutte-Gattat D, Becker N, Meyer S, Shukla MS, Hayes JJ, Everaers R, Angelov D, Bednar J, Dimitrov S (2010) Single-base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome. Proceedings of the National Academy of Sciences of the United States of America 107:9620–9625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talasz H, Helliger W, Puschendorf B, Lindner H (1996) In vivo phosphorylation of histone H1 variants during the cell cycle. Biochemistry 35:1761–1767

    Article  CAS  PubMed  Google Scholar 

  • Talasz H, Sarg B, Lindner H (2009) Site-specifically phosphorylated forms of H1.5 and H1.2 localized at distinct regions of the nucleus are related to different processes during the cell cycle. Chromosoma 118:693–709

    Article  CAS  PubMed  Google Scholar 

  • Talbert PB, Ahmad K, Almouzni G, Ausió J, Berger F, Bhalla PL, Bonner WM, Cande WZ, Chadwick BP, Chan SW, Cross GA, Cui L, Dimitrov SI, Doenecke D, Eirin-López JM, Gorovsky MA, Hake SB, Hamkalo BA, Holec S, Jacobsen SE, Kamieniarz K, Khochbin S, Ladurner AG, Landsman D, Latham JA, Loppin B, Malik HS, Marzluff WF, Pehrson JR, Postberg J, Schneider R, Singh MB, Smith MM, Thompson E, Torres-Padilla ME, Tremethick DJ, Turner BM, Waterborg JH, Wollmann H, Yelagandula R, Zhu B, Henikoff S (2012) A unified phylogeny-based nomenclature for histone variants. Epigenetics & Chromatin 5:7

    Article  CAS  Google Scholar 

  • Terme JM, Millán-Ariño L, Mayor R, Luque N, Izquierdo-Bouldstridge A, Bustillos A, Sampaio C, Canes J, Font I, Sima N, Sancho M, Torrente L, Forcales S, Roque A, Suau P, Jordan A (2014) Dynamics and dispensability of variant-specific histone H1 Lys-26/Ser-27 and Thr-165 post-translational modifications. FEBS Letters 588:2353–2362

    Article  CAS  PubMed  Google Scholar 

  • Th’ng JP, Guo XW, Swank RA, Crissman HA, Bradbury EM (1994) Inhibition of histone phosphorylation by staurosporine leads to chromosome decondensation. Journal of Biological Chemistry 269:9568–9573

    PubMed  Google Scholar 

  • Th’ng JP, Sung R, Ye M, Hendzel MJ (2005) H1 family histones in the nucleus. Control of binding and localization by the C-terminal domain. Journal of Biological Chemistry 280:27809–27814

    Article  PubMed  Google Scholar 

  • Trieschmann L, Postnikov YV, Rickers A, Bustin M (1995) Modular structure of chromosomal proteins HMG-14 and HMG-17: definition of a transcriptional enhancement domain distinct from the nucleosomal binding domain. Molecular and Cellular Biology 15:6663–6669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trojer P, Zhang J, Yonezawa M, Schmidt A, Zheng H, Jenuwein T, Reinberg D (2009) Dynamic histone H1 isotype 4 methylation and demethylation by histone lysine methyltransferase G9a/KMT1C and the jumonji domain-containing JMJD2/KDM4 proteins. Journal of Biological Chemistry 284:8395–8405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uversky VN (2013) A decade and a half of protein intrinsic disorder, biology still waits for physics. Protein Sciences 22:693–724

    Article  CAS  Google Scholar 

  • Vicent GP, Wright RH, Beato M (2016) Linker histones in hormonal gene regulation. Biochimica et Biophysica Acta 1859:520–525

    Article  CAS  PubMed  Google Scholar 

  • Vila R, Ponte I, Collado M, Arrondo JL, Jiménez MA, Rico M, Suau P (2001) DNA-induced alpha-helical structure in the NH2-terminal domain of histone H1. Journal of Biological Chemistry 276:46429–46435

    Article  CAS  PubMed  Google Scholar 

  • Vila R, Ponte I, Jimenez MA, Rico M, Suau P (2002) An induciblé helix-Gly-Gly-helix motif in the N-terminal domain of histone H1e: a CD and NMR study. Protein Sciences 11:214–220

    Article  CAS  Google Scholar 

  • Vyas P, Brown DT (2012) N- and C-terminal domains determine differential nucleosomal binding geometry and affinity of linker histone isotypes H1(0) and H1c. Journal of Biological Chemistry 287:11778–11787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Moore SC, Laszckzak M, Ausió J (2000) Acetylation increases the alpha-helical content of the histone tails of the nucleosome. Journal of Biological Chemistry 275:35013–35020

    Article  CAS  PubMed  Google Scholar 

  • Weiss T, Hergeth S, Zeissler U, Izzo A, Tropberger P, Zee BM, Dundr M, Garcia BA, Daujat S, Schneider R (2010) Histone H1 variant-specific lysine methylation by G9a/KMT1C and Glp1/KMT1D. Epigenetics & Chromatin 3:7

    Article  Google Scholar 

  • Wright RH, Castellano G, Bonet J, Le Dily F, Font-Mateu J, Ballaré C, Nacht AS, Soronellas D, Oliva B, Beato M (2012) CDK2-dependent activation of PARP-1 is required for hormonal gene regulation in breast cancer cells. Genes and Development 26:1972–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2007) Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. Journal of Proteome Research 6:1917–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan W, Ma L, Burns KH, Matzuk MM (2003) HILS1 is a spermatid-specific linker histone H1-like protein implicated in chromatin remodeling during mammalian spermiogenesis. Proceedings of the National Academy of Sciences of the United States of America 100:10546–10551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, John S, Pesavento JJ, Schultz-Norton JR, Schiltz RL, Baek S, Nardulli AM, Hager GL, Kelleher NL, Mizzen CA (2010) Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II. Journal of Cell Biology 189:407–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Suau.

Ethics declarations

Funding

This work was supported in part by the Ministerio de Ciencia e Innovación (BFU2008–00460).

Conflict of interest

The authors declare that they have no competing interest.

Animal experiments

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roque, A., Ponte, I. & Suau, P. Post-translational modifications of the intrinsically disordered terminal domains of histone H1: effects on secondary structure and chromatin dynamics. Chromosoma 126, 83–91 (2017). https://doi.org/10.1007/s00412-016-0591-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-016-0591-8

Keywords

Navigation