Skip to main content
Log in

Deep recycling of crustal materials by the Hainan mantle plume: evidence from Zn–Sr–Nd–Pb isotopes of Hainan Island basalts

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Understanding the compositional heterogeneity of the deep mantle requires identifying the nature of recycled crustal materials in the sources of mantle-plume-related magmas. However, it is still unclear whether or not the deep mantle contains recycled carbonates from the Earth’s surface. In this study, we present comprehensive data on whole-rock high-precision zinc isotopes, as well as major- and trace-element geochemistry, and Sr–Nd–Pb isotopes of basalts on Hainan Island to examine the influence of recycled materials (particularly carbonates) on the mantle source heterogeneity of the Hainan mantle plume. The basalts have highly variable δ66Zn values ranging from 0.21‰ to 0.42‰. These variable Zn isotopic compositions cannot be accounted for by processes such as post-magmatic alteration and crustal contamination, or by fractional crystallization and partial melting; instead, they reflect mantle heterogeneity. Comparisons of the major- and trace-element compositions (e.g., CaO and TiO2 contents and Zn/Fe and Fe/Mn ratios), FC3MS and FCKANTMS peridotite and pyroxenite melting parameters, as well as pseudo-ternary projections of the primary Hainan basaltic magmas with experimental data suggest that the primary magmas were partial melts of silica-deficient pyroxenitic lithologies with peridotite residue. The heterogeneous geochemical and lithological compositions of the Hainan basalts indicate that recycled sedimentary carbonates and siliceous rocks were important constituents in their mantle source. Quantitative modeling reveals that the addition of 1–10% subducted sediments into the source of the Hainan basalts closely reproduces their Zn–Sr–Nd–Pb isotopic values. The source component with the heaviest Zn isotopic composition measured for the Hainan basalt samples could have contained more than 9% recycled carbonate. Our findings provide insights into the role of subducted materials to mantle heterogeneity and highlight the contribution of subducted sedimentary carbonates in the deep recycling of oceanic slabs, including—in the case of the Hainan mantle plume—recycled deep mantle (i.e., the mantle transition zone and lower mantle).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  • An AR, Choi SH, Yu Y, Lee DC (2017) Petrogenesis of Late Cenozoic basaltic rocks from southern Vietnam. Lithos 272–273:192–204

    Article  Google Scholar 

  • Antonelli MA, Schiller M, Schauble EA, Mittal T, DePaolo DJ, Chacko T, Grew ES, Tripoli B (2019) Kinetic and equilibrium Ca isotope effects in high-T rocks and minerals. Earth Planet Sci Lett 517:71–82

    Article  CAS  Google Scholar 

  • Aubaud C, Pineau F, H’ekinian R, Javoy M (2005) Degassing of CO2 and H2O in submarine lavas from the Society hotspot. Earth Planet Sci Lett 235:511–527

    Article  CAS  Google Scholar 

  • Beunon H, Mattielli N, Doucet LS, Moine B, Debret B (2020) Mantle heterogeneity through Zn systematics in oceanic basalts: evidence for a deep carbon cycling. Earth-Sci Rev 205:103174

    Article  CAS  Google Scholar 

  • Brenker FE, Vollmer C, Vincze L, Vekemans B, Szymanski A, Janssens K, Szaloki I, Nasdala L, Joswig W, Kaminsky F (2007) Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet Sci Lett 260:1–9

    Article  CAS  Google Scholar 

  • Campbell IH, O’Neill HSC (2012) Evidence against a chondritic Earth. Nature 483(7391):553–558

    Article  CAS  Google Scholar 

  • Cao G, Tong Y, Li X, Wang L (2022) Insights from olivine chemistry into crustal magmatic processes and the mantle source lithology of basalts from Hainan Island. China Lithos 430:106852

    Article  Google Scholar 

  • Chauvel C, Hofmann AW, Vidal P (1992) HIMU-EM: The french polynesian connection. Earth Planet Sci Lett 110:99–119

    Article  CAS  Google Scholar 

  • Chauvel C, Lewin E, Carpentier M, Arndt NT, Marini JC (2008) Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nat Geosci 1(1):64–67

    Article  CAS  Google Scholar 

  • Chen H, Savage PS, Teng FZ, Helz RT, Moynier F (2013) Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth. Earth Planet Sci Lett 369–370:34–42

    Article  Google Scholar 

  • Choi SH, Liu SA (2022) Zinc isotopic systematics of the Mt. Baekdu and Jeju Island intraplate basalts in Korea, and implications for mantle source lithologies. Lithos 416–417:106659

    Article  Google Scholar 

  • Clift PD (2017) A revised budget for Cenozoic sedimentary carbon subduction. Rev Geophy 55(1):97–125

    Article  Google Scholar 

  • Dasgupta R (2013) Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev Mineral Geochem 75:183–229

    Article  CAS  Google Scholar 

  • Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298(1–2):1–13

    Article  CAS  Google Scholar 

  • Dasgupta R, Hirschmann MM, Withers AC (2004) Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett 227(1–2):73–85

    Article  CAS  Google Scholar 

  • Dasgupta R, Hirschmann MM, Stalker K (2006) Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite plus CO2 and genesis of silica-undersaturated ocean island lavas. J Petrol 47:647–671

    Article  CAS  Google Scholar 

  • Dasgupta R, Hirschmann MM, Smith ND (2007) Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of Alkalic Ocean Island Basalts. J Petrol 48:2093–2124

    Article  CAS  Google Scholar 

  • Deines P (2002) The carbon isotope geochemistry of mantle xenoliths. Earth-Sci Rev 58:247–278

    Article  CAS  Google Scholar 

  • Demény A, Vennemann TW, Hegner E, Nagy G, Milton JA, Embey-Isztin A, Homonnay Z, Dobosi G (2004) Trace element and C-O-Sr-Nd isotope evidence for subduction-related carbonate–silicate melts in mantle xenoliths (Pannonian Basin, Hungary). Lithos 75(1–2):89–113

    Article  Google Scholar 

  • Dixon JE, Stolper EM, Holloway JR (1995). An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility models. J Petrol 36 (6):1607–1631

  • Doucet LS, Mattielli N, Ionov DA, Debouge W, Golovin AV (2016) Zn isotopic heterogeneity in the mantle: a melting control? Earth Planet Sci Lett 451:232–240

    Article  CAS  Google Scholar 

  • Doucet LS, Laurent O, Ionov DA, Mattielli N, Debaille V, Debouge W (2020) Archean lithospheric differentiation: Insights from Fe and Zn isotopes. Geology 48:G476471

    Article  Google Scholar 

  • Doucet LS, Li ZX, Fougerouse D, Olierook HK, Gamaleldien H, Kirkland CL, Harnady MI (2023) The global lead isotope system: Toward a new framework reflecting Earth’s dynamic evolution. Earth-sci Rev 243:104483

    Article  CAS  Google Scholar 

  • Eriksen ZT, Jacobsen SB (2022) Calcium isotope constraints on OIB and MORB petrogenesis: The importance of melt mixing. Earth Planet Sci Lett 593:117665

    Article  CAS  Google Scholar 

  • Fan Q, Hooper PR (1989) The mineral chemistry of ultramafic xenoliths of eastern China: implications for upper mantle composition and the paleogeotherms. J Petrol 30(5):1117–1158

    Article  Google Scholar 

  • Fan QC, Hooper PR (1991) The Cenozoic basaltic rocks of Eastern China: petrology and chemical composition. J Petrol 32:765–810

    Article  CAS  Google Scholar 

  • Fan QC, Sun Q, Li N, Sui JL (2004) Periods of volcanic activity and magma evolution of Holocene in North Hainan Island. Acta Petrol Sin 20:533–544 ((in Chinese with English abstract))

    CAS  Google Scholar 

  • Fang SB, Huang J, Zhang XC, Ionov DA, Zhao ZF, Huang F (2022) Zinc isotope fractionation in mantle rocks and minerals, and a revised δ66Zn value for the Bulk Silicate Earth. Geochim Cosmochim Ac 338:79–92

    Article  CAS  Google Scholar 

  • Flower MFJ, Zhang M, Chen CY, Tu K, Xie GH (1992) Magmatism in the south China basin: 2. Post-spreading Quaternary basalts from Hainan Island, south China. Chem Geol 97:65–87

    Article  CAS  Google Scholar 

  • Gerbode C, Dasgupta R (2010) Carbonate-fluxed Melting of MORB-like Pyroxenite at 2 center dot 9 GPa and Genesis of HIMU Ocean Island Basalts. J Petrol 51:2067–2088

    Article  CAS  Google Scholar 

  • Grove T, Holbig E, Barr J, Till C, Krawczynski M (2013) Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite. Contr Mineral Petrol 166:887–910

    Article  CAS  Google Scholar 

  • Gu XY, Wang PY, Kuritani T, Hanski E, Xia QK, Wang QY (2019) Low water content in the mantle source of the Hainan plume as a factor inhibiting the formation of a large igneous province. Earth Planet Sci Lett 515:221–230

    Article  CAS  Google Scholar 

  • Han JW, Xiong XL, Zhu ZY (2009) Geochemistry of Late-Cenozoic basalts from Leiqiong area: the origin of EM2 and the contributions from sub-continental lithosphere mantle. Acta Petrol Sin 25:3208–3220 ((in Chinese with English abstract))

    CAS  Google Scholar 

  • Hart SR (1984) A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309:753–757

    Article  CAS  Google Scholar 

  • Hart SR, Hauri EH, Oschmann LA, Whitehead JA (1992) Mantle plumes and entrainment: isotopic evidence. Science 256:517–520

    Article  CAS  Google Scholar 

  • Hauff F, Hoernle K, Schmidt A (2003) Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): Implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system. Geochem Geophy Geosy. https://doi.org/10.1029/2002GC000421

    Article  Google Scholar 

  • Hauri EH, Whitehead JA, Hart SR (1994) Fluid dynamic and geochemical aspects of entrainment in mantle plumes. J Geophys Res 99:24275–24300

    Article  CAS  Google Scholar 

  • Hazen RM, Schiffries CM (2013) Why deep carbon? Rev Mineral Geochem 75:1–6

    Article  CAS  Google Scholar 

  • He Y, Wen L (2011) Seismic velocity structures and detailed features of the D discontinuity near the core–mantle boundary beneath eastern Eurasia. Phys Earth Planet in 189:176–184

    Article  Google Scholar 

  • Herzberg C (2006) Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature 444:605–609

    Article  CAS  Google Scholar 

  • Herzberg C (2011) Identification of source lithology in the Hawaiian and Canary Islands: implications for origins. J Petrol 52(1):113–146

    Article  CAS  Google Scholar 

  • Herzberg C, Asimow PD (2008). Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochem Geophy Geosy 8:Q09001

  • Hirose K (1997) Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophys Res Lett 24:2837–2840

    Article  CAS  Google Scholar 

  • Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett 114(4):477–489

    Article  CAS  Google Scholar 

  • Hirschmann MM, Kogiso T, Baker MB, Stolper EM (2003) Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31:481–484

    Article  CAS  Google Scholar 

  • Ho KS, Chen J, Juang W (2000) Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, southern China. J Asian Earth Sci 18:307–324

    Article  Google Scholar 

  • Hoang N, Flower M (1998) Petrogenesis of Cenozoic basalts from Vietnam: implication for origins of a ‘diffuse igneous province.’ J Petrol 39:369–395

    Article  CAS  Google Scholar 

  • Hoang N, Flower M, Carlson R (1996) Major, trace element, and isotopic compositions of Vietnamese basalts: interaction of hydrous EM1-rich asthenosphere with thinned Eurasian lithosphere. Geochim Cosmochim Ac 60:4329–4351

    Article  Google Scholar 

  • Hoang THA, Choi SH, Yu Y, Pham TH, Nguyen KH, Ryu JS (2018) Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts. Vietnam Lithos 296–299:382–395

    Article  Google Scholar 

  • Hofmann AW, Class C, Goldstein SL (2022). Size and composition of the MORB+OIB mantle reservoir. Geochem Geophy Geosy 23: e2022GC010339

  • Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett 57:421–436

    Article  CAS  Google Scholar 

  • Hu Y, Teng FZ, Plank T, Huang KJ (2017) Magnesium isotopic composition of subducting marine sediments. Chem Geol 466:15–31

    Article  CAS  Google Scholar 

  • Hu QW, Mei SW, Zhang L, Ren ZY (2023) Mantle source heterogeneity for Hainan basalts revealed by Pb and Sr isotopic compositions in olivine-hosted melt inclusions. Lithos 438:106991

    Article  Google Scholar 

  • Huang J, Zhao D (2006) High-resolution mantle tomography of China and surrounding regions. J Geophys Res-Sol Ea 111:B09305

    Article  Google Scholar 

  • Huang J, Liu S-A, Gao Y, Xiao Y, Chen S (2016) Copper and zinc isotope systematics of altered oceanic crust at IODP Site 1256 in the eastern equatorial Pacific. J Geophys Res-Sol Ea 121(10):7086–7100

    Article  CAS  Google Scholar 

  • Huang J, Chen S, Zhang X, Huang F (2018a) Effects of melt percolation on Zn isotope heterogeneity in the mantle: constraints from peridotite massifs in Ivrea Verbano zone, Italian Alps. J Geophys Res-Sol Ea 123:2706–2727

    Article  CAS  Google Scholar 

  • Huang J, Zhang X-C, Chen S, Tang L, Wörner G, Yu H, Huang F (2018b) Zinc isotopic systematics of Kamchatka-Aleutian arc magmas controlled by mantle melting. Geochim Cosmochim Ac 238:85–101

    Article  CAS  Google Scholar 

  • Huang J, Ackerman L, Zhang XC, Huang F (2019) Mantle Zn isotopic heterogeneity caused by melt-rock reaction: evidence from Fe-rich peridotites and pyroxenites from the Bohemian Massif. Central Europe J Geophys Res-Sol Ea 124(4):3588–3604

    CAS  Google Scholar 

  • Inglis EC, Debret B, Burton KW, Millet MA, Pons ML, Dale CW (2017) The behaviour of iron and zinc stable isotopes accompanying the subduction of mafic oceanic crust: a case study from western alpine ophiolites. Geochem Geophy Geosy 18(7):2562–2579

    Article  CAS  Google Scholar 

  • Ionov DA, Qi YH, Kang JT, Golovin AV, Oleinikov OB, Zheng W, Anbar AD, Zhang ZF, Huang F (2019) Calcium isotopic signatures of carbonatite and silicate metasomatism, melt percolation and crustal recycling in the lithospheric mantle. Geochim Cosmochim Ac 248:1–13

    Article  CAS  Google Scholar 

  • Kang JT, Ionov DA, Zhu HL, Liu F, Zhang ZF, Liu Z, Huang F (2019) Calcium isotope sources and fractionation during melt-rock interaction in the lithospheric mantle: Evidence from pyroxenites, wehrlites, and eclogites. Chem Geol 524:272–282

    Article  CAS  Google Scholar 

  • Kelemen PB, Manning CE (2015) Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc Natl Acad Sci 112:E3997–E4006

    Article  CAS  Google Scholar 

  • Keshav S, Gudfinnsson GH, Sen G, Fei Y (2004) High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean-island basalts. Earth Planet Sci Lett 223:365–379

    Article  CAS  Google Scholar 

  • Kogiso T, Hirschmann MM (2006) Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts. Earth Planet Sci Lett 249:188–199

    Article  CAS  Google Scholar 

  • Kogiso T, Hirose K, Takahashi E (1998) Melting experiments on homogeneous mixtures of peridotite and basalt: application to the genesis of ocean island basalts. Earth Planet Sci Lett 162:45–61

    Article  CAS  Google Scholar 

  • Kogiso T, Hirschmann MM, Pertermann M (2004) High-pressure partial melting of mafic lithologies in the mantle. J Petrol 12:2407–2422

    Article  Google Scholar 

  • Lambart S, Laporte D, Schiano P (2009) An experimental study of pyroxenite partial melts at 1 and 1.5 GPa: Implications for the major-element composition of Mid-Ocean Ridge Basalts. Earth Planet Sci Lett 288:335–347

    Article  CAS  Google Scholar 

  • Lambart S, Laporte D, Provost A, Schiano P (2012) Fate of pyroxenite-derived melts in the peridotitic mantle: thermodynamic and experimental constraints. J Petrol 53:451–476

    Article  CAS  Google Scholar 

  • Lambart S, Laporte D, Schiano P (2013) Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: review of the experimental constraints. Lithos 160–161:14–36

    Article  Google Scholar 

  • Le Roux V, Lee CTA, Turner SJ (2010) Zn/Fe systematics in mafic and ultramafic systems: implications for detecting major element heterogeneities in the Earth’s mantle. Geochim Cosmochim Ac 74(9):2779–2796

    Article  Google Scholar 

  • Lei JS, Zhao DP, Steinberger B, Wu B, Shen F, Li Z (2009) New seismic constraints on the upper mantle structure of the Hainan plume. Phys Earth Planet in 173(1):33–50

    Article  Google Scholar 

  • Li SG, Yang W, Ke S, Meng XN, Tian HC, Xu LJ, He YS, Huang J, Wang XC, Xia QK, Sun WD, Yang XY, Ren ZY, Wei HQ, Liu YS, Meng FC, Yan J (2017) Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. Nat Sci Rev 4:111–120

    Article  CAS  Google Scholar 

  • Li YQ, Kitagawa H, Nakamura E, Ma C, Hu X, Kobayashi K, Sakaguchi C (2020). Various ages of recycled material in the source of Cenozoic basalts in SE China: Implications for the role of the Hainan Plume. J Petrol 61(6) :egaa060.

  • Liu JQ, Ren ZY, Nichols ARL, Song MS, Qian SP, Zhang Y, Zhao PP (2015a) Petrogenesis of Late Cenozoic basalts from North Hainan Island: constraints from melt inclusions and their host olivines. Geochim Cosmochim Ac 152:89–121

    Article  CAS  Google Scholar 

  • Liu YS, He DT, Gao CG, Foley S, Gao S, Hu ZC, Zong KQ, Chen HH (2015b) First direct evidence of sedimentary carbonate recycling in subduction-related xenoliths. Sci Rep 5(1):11547

    Article  CAS  Google Scholar 

  • Liu SA, Wang ZZ, Li SG, Huang J, Yang W (2016) Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China. Earth Planet Sci Lett 444:169–178

    Article  CAS  Google Scholar 

  • Liu SA, Liu PP, Lv Y, Wang ZZ, Dai JG (2019) Cu and Zn Isotope Fractionation during Oceanic Alteration: Implications for Oceanic Cu and Zn Cycles. Geochim Cosmochim Ac 257:191–205

    Article  CAS  Google Scholar 

  • Liu JQ, Chen LH, Wang XJ, Zhang XY, Zeng G, Erdmann S, Murphy DT, Collerson KD, Komiya T, Krmíček L (2022a) Magnesium and zinc isotopic evidence for the involvement of recycled carbonates in the petrogenesis of Gaussberg lamproites. Antarctica Chem Geol 609:121067

    Article  CAS  Google Scholar 

  • Liu SA, Qu YR, Wang ZZ, Li ML, Yang C, Li SG (2022b) The fate of subducting carbon tracked by Mg and Zn isotopes: a review and new perspectives. Earth-Sci Rev 228:104010

    Article  CAS  Google Scholar 

  • Liu SA, Wang ZZ, Yang C, Li SG, Ke S (2020). Mg and Zn isotope evidence for two types of mantle metasomatism and deep recycling of magnesium carbonates. J Geophys Res-Sol Ea 125: e2020JB020684.

  • Lv Y, Liu SA, Wu H, Hohl SV, Chen S, Li S (2018) Zn-Sr isotope records of the Ediacaran Doushantuo formation in South China: Diagenesis assessment and implications. Geochim Cosmochim Ac 239:330–345

    Article  CAS  Google Scholar 

  • Lv Y, Liu SA, Teng FZ, Wei GJ, Ma JL (2020) Contrasting zinc isotopic fractionation in two mafic-rock weathering profiles induced by adsorption onto Fe (hydr)oxides. Chem Geol 539:119504

    Article  CAS  Google Scholar 

  • Lv M, Dorfman SM, Badro J, Borensztajn S, Greenberg E, Prakapenka VB (2021) Reversal of carbonate-silicate cation exchange in cold slabs in Earth’s lower mantle. Nat Commun 12:1–7

    Article  Google Scholar 

  • Maréchal CN, Télouk P, Albarède F (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol 156(1–4):251–273

    Article  Google Scholar 

  • Marty B, Tolstikhin IN (1998) CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem Geol 145:233–248

    Article  CAS  Google Scholar 

  • McCoy-West AJ, Fitton JG, Pons ML, Inglis EC, Williams HM (2018) The Fe and Zn isotope composition of deep mantle source regions: Insights from Baffin Island picrites. Geochim Cosmochim Ac 238:542–562

    Article  CAS  Google Scholar 

  • Miller WGR, Maclennan J, Shorttle O, Gaetani GA, Klein F (2019) Estimating the carbon content of the deep mantle with Icelandic melt inclusions. Earth Planet Sci Lett 523:1–12

    Article  Google Scholar 

  • Moeller K, Schoenberg R, Pedersen RB, Weiss D, Dong S (2012) Calibration of the new certified reference materials ERM-AE633 and ERM-AE647 for Copper and IRMM-3702 for zinc isotope amount ratio determinations. Geostand Geoanal Res 36(2):177–199

    Article  CAS  Google Scholar 

  • Montelli R, Nolet G, Dahlen FA, Masters G (2006) A catalogue of deep mantle plumes: New results from finite-frequency tomography. Geochem Geophy Geosy 7:Q11007

    Article  Google Scholar 

  • Moynier F, Vance D, Fujii T, Savage P (2017) The isotope geochemistry of zinc and copper. Rev Mineral Geochem 82:543–600

    Article  CAS  Google Scholar 

  • O’Hara MJ (1968) The bearing of phase equilibria studies in synthetic and natural systems on the origin of basic and ultrabasic rocks. Earth-Sci Rev 4:69–133

    Article  Google Scholar 

  • Pertermann M, Hirschmann MM (2003) Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral–melt partitioning of major elements at 2–3GPa. J Petrol 44:2173–2201

    Article  CAS  Google Scholar 

  • Pichat S, Douchet C, Albarède F (2003) Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka. Earth Planet Sci Lett 210:167–178

    Article  CAS  Google Scholar 

  • Pickard H, Palk E, Schönbächler M, Moore RE, Coles BJ, Kreissig K, Nilsson-Kerr K, Hammond SJ, Takazawa E, Hémond C, Tropper P, Barfod DN, Rehkämper M (2022) The cadmium and zinc isotope compositions of the silicate Earth–implications for terrestrial volatile accretion. Geochim Cosmochim Ac 338:165–180

    Article  CAS  Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145(3–4):325–394

    Article  CAS  Google Scholar 

  • Plank T, Manning CE (2019) Subducting carbon. Nature 574:343–352

    Article  CAS  Google Scholar 

  • Qiu XF, Yang HM, Zhao XM, Lu SS, Wu NW, Zhang LG, Zhang CH (2016) Early Triassic gneissoid granites in the Gaozhou area (Yunkai Massif), South China: implications for the amalgamation of the Indochina and South China Blocks. J Geol 124(3):395–409

    Article  CAS  Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contr Mineral and Petrol 29:275–289

    Article  CAS  Google Scholar 

  • Shu ZT, Liu SA, Prelević D, Wang Y, Foley SF, Cvetković V, Li S (2023) Recycled carbonate-bearing silicate sediments in the sources of circum-Mediterranean K-rich lavas: Evidence from Mg-Zn isotopic decoupling. J Geophys Res-Sol Ea 128: e2022JB025135

  • Sisson TW, Kimura JI, Coombs ML (2009) Basanite-nephelinite suite from early Kilauea: carbonated melts of phlogopite-garnet peridotite at Hawaii’s leading magmatic edge. Contr Mineral Petrol 158:803–829

    Article  CAS  Google Scholar 

  • Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung SL, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417

    Article  CAS  Google Scholar 

  • Sossi PA, Halverson GP, Nebel O, Eggins SM (2015) Combined separation of Cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination. Geostand Geoanal Res 39(2):129–149

    Article  CAS  Google Scholar 

  • Sossi PA, Nebel O, O’Neill HSC, Moynier F (2018) Zinc isotope composition of the Earth and its behaviour during planetary accretion. Chem Geol 477:73–84

    Article  CAS  Google Scholar 

  • Spandler C, Yaxley G, Green DH, Rosenthal A (2008) Phase relations and melting of anhydrous K-bearing eclogite from 1200 to 1600 °C and 3 to 5 GPa. J Petrol 49:771–795

    Article  CAS  Google Scholar 

  • Stracke A (2012) Earth’s heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chem Geol 330:274–299

    Article  Google Scholar 

  • Stracke A, Bizimis M, Salters VJM (2003) Recycling oceanic crust: quantitative constraints. Geochem Geophy Geosy. https://doi.org/10.1029/2001GC000223

    Article  Google Scholar 

  • Sun C, Dasgupta R (2019) Slab–mantle interaction, carbon transport, and kimberlite generation in the deep upper mantle. Earth Planet Sci Lett 506:38–52

    Article  CAS  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc London Special Pub 42(1):313–345

    Article  Google Scholar 

  • Sun WD, Hawkesworth C, Yao C, Zhang CC, Huang RF, Liu X, Sun XL, Ireland T, Song MS, Ling MX, Ding X, Zhang ZF, Fan WM, Wu ZQ (2018) Carbonated mantle domains at the base of the Earth’s transition zone. Chem Geol 478:69–75

    Article  CAS  Google Scholar 

  • Sweere TC, Dickson AJ, Jenkyns HC, Porcelli D, Elrick M, van den Boorn SHJM, Henderson GM (2018) Isotopic evidence for changes in the zinc cycle during Oceanic Anoxic Event 2 (Late Cretaceous). Geology 46(5):463–466

    Article  CAS  Google Scholar 

  • Teng FZ (2017) Magnesium Isotope Geochemistry. Rev Mineral Geochem 82(1):219–287

    Article  CAS  Google Scholar 

  • Thomson AR, Walter MJ, Kohn SC, Brooker RA (2016) Slab melting as a barrier to deep carbon subduction. Nature 529:76–79

    Article  CAS  Google Scholar 

  • Tu K, Flower MFJ, Carlson RW, Zhang M, Xie GH (1991) Sr, Nd, and Pb isotopic compositions of Hainan basalts (south China): implications for a subcontinental lithosphere Dupal source. Geology 19:567–569

    Article  CAS  Google Scholar 

  • Tu K, Flower MFJ, Carlson RW, Xie G, Chen CY, Zhang M (1992) Magmatism in the South China Basin: 1. Isotopic and trace-element evidence for an endogenous Dupal mantle component. Chem Geol 97(1–2):47–63

    Article  CAS  Google Scholar 

  • Vervoort JD, Patchett PJ, Blichert-Toft J, Albarède F (1999) Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth Planet Sci Lett 168(1–2):79–99

    Article  CAS  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60

    Article  CAS  Google Scholar 

  • Wang CY, Huang JL (2012) Mantle transition zone structure around Hainan by receiver function analysis. Chinese J Geophys 55:1161–1167

    Google Scholar 

  • Wang XC, Li ZX, Li XH, Li J, Liu Y, Long WG, Zhou JB, Wang F (2012) Temperature, pressure, and composition of the mantle source region of Late Cenozoic basalts in Hainan Island, SE Asia: a consequence of a young thermal mantle plume close to subduction zones? J Petrol 53:177–233

    Article  CAS  Google Scholar 

  • Wang XC, Li ZX, Li XH, Li J, Xu YG, Li XH (2013) Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: implications for potential linkages between plume and plate tectonics. Earth Planet Sci Lett 377:248–259

    Article  Google Scholar 

  • Wang ZZ, Liu SA, Liu J, Huang J, Xiao Y, Chu ZY, Zhao XM, Tang L (2017) Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth’s upper mantle. Geochim Cosmochim Ac 198:151–167

    Article  CAS  Google Scholar 

  • Wang ZZ, Liu SA, Chen LH, Li SG, Zeng G (2018) Compositional transition in natural alkaline lavas through silica-undersaturated melt–lithosphere interaction. Geology 46(9):771–774

    Article  CAS  Google Scholar 

  • Wang ZZ, Liu SA (2021) Evolution of intraplate alkaline to tholeiitic basalts via interaction between carbonated melt and lithospheric mantle. J Petrol 62(4): egab025

  • Weaver BL (1991) The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet Sci Lett 104(2–4):381–397

    Article  CAS  Google Scholar 

  • White WM, Albarède F, Télouk P (2000) High-precision analysis of Pb isotope ratios by multi-collector ICP-MS. Chem Geol 167(3–4):257–270

    Article  CAS  Google Scholar 

  • Williams HM, Bizimis M (2014) Iron isotope tracing of mantle heterogeneity within the source regions of oceanic basalts. Earth Planet Sci Lett 404:396–407

    Article  CAS  Google Scholar 

  • Wirth R, Kaminsky F, Matsyuk S, Schreiber A (2009) Unusual micro- and nano-inclusions in diamonds from the Juina Area, Brazil. Earth Planet Sci Lett 286:292–303

    Article  CAS  Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231(1–2):53–72

    Article  CAS  Google Scholar 

  • Yan QS, Shi XF, Wang KS, Bu WR, Xiao L (2008) Major element, trace element, and Sr, Nd and Pb isotope studies of Cenozoic basalts from the South China Sea. Sci China Earth Sci 51:550–566

    Article  CAS  Google Scholar 

  • Yan Q, Shi X, Metcalfe I, Liu S, Xu T, Kornkanitnan N, Sirichaiseth T, Yuan L, Zhang Y, Zhang H (2018) Hainan mantle plume produced late Cenozoic basaltic rocks in Thailand. Southeast Asia Sci Rep 8:2640

    Google Scholar 

  • Yang C, Liu SA (2019) Zinc isotope constraints on recycled oceanic crust in the mantle sources of the Emeishan large Igneous Province. J Geophys Res-Sol Ea 124(12):12537–12555

    Article  CAS  Google Scholar 

  • Yang ZF, Zhou JH (2013) Can we identify source lithology of basalt? Sci Rep 3:1856

    Article  Google Scholar 

  • Yang ZF, Li J, Liang WF, Luo ZH (2016) On the chemical markers of pyroxenite contributions in continental basalts in Eastern China: Implications for source lithology and the origin of basalts. Earth-Sci Rev 157:18–31

    Article  CAS  Google Scholar 

  • Yang ZF, Li J, Jiang QB, Xu F, Guo SY, Li Y, Zhang J (2019) Using major element logratios to recognize compositional patterns of basalt: Implications for source lithological and compositional heterogeneities. J Geophys Res-Sol Ea 124:3458–3490

    Article  CAS  Google Scholar 

  • Yang C, Liu SA, Zhang L, Wang ZZ, Liu PP, Li SG (2021) Zinc isotope fractionation between Cr-spinel and olivine and its implications for chromite crystallization during magma differentiation. Geochim Cosmochim Ac 313:277–294

    Article  CAS  Google Scholar 

  • Yao JH, Huang J, Zhang GL (2022) Zinc isotope constraints on carbonated mantle sources for rejuvenated-stage lavas from Kauaʻi. Hawaiʻi Chem Geol 605:120967

    Article  CAS  Google Scholar 

  • Zhang GL, Chen LH, Jackson MG, Hofmann AW (2017) Evolution of carbonated melt to alkali basalt in the South China Sea. Nat Geosci 10:229–235

    Article  CAS  Google Scholar 

  • Zhang XY, Chen LH, Wang XJ, Hanyu T, Hofmann AW, Komiya T, Nakamura K, Kato Y, Zeng G, Gou WX, Li WQ (2022) Zinc isotopic evidence for recycled carbonate in the deep mantle. Nat Commun 13(1):1–7

    Google Scholar 

  • Zhao D, Toyokuni G, Kurata K (2021a) Deep mantle structure and origin of Cenozoic intraplate volcanoes in Indochina, Hainan and South China Sea. Geophys J Int 225:572–588

    Article  Google Scholar 

  • Zhao ZH, Zhang GL, Wang S, Zhao JX (2021b) Origin of arc-like intraplate volcanism by melting of lithospheric mantle pyroxenite of the South China continental margin. Lithos 396:106236

    Article  Google Scholar 

  • Zhong Y, Chen LH, Wang XJ, Zhang GL, Xie LW, Zeng G (2017) Magnesium isotopic variation of oceanic island basalts generated by partial melting and crustal recycling. Earth Planet Sci Lett 463:127–135

    Article  CAS  Google Scholar 

  • Zhou XH, Armstrong RL (1982) Cenozoic volcanic rocks of eastern China – secular and geographic trends in chemistry and strontium isotopic composition. Earth Planet Sci Lett 58:301–329

    Article  CAS  Google Scholar 

  • Zhou P, Mukasa SB (1997) Nd–Sr–Pb isotopic, and major- and trace-element geochemistry of Cenozoic lavas from the Khorat Plateau, Thailand: sources and petrogenesis. Chem Geol 137:175–193

    Article  CAS  Google Scholar 

  • Zhu YT, Liu YS, Xu R, Moynier F, Li M, Chen HH (2021) Deciphering the origin of a basanite-alkali basalt-tholeiite suite using Zn isotopes. Chem Geol 585:120585

    Article  CAS  Google Scholar 

  • Zou HB, Fan QC (2010) U-Th isotopes in Hainan basalts: implications for sub-asthenospheric origin of EM2 mantle end member and the dynamics of melting beneath Hainan Island. Lithos 116:145–152

    Article  CAS  Google Scholar 

  • Zou HB, Zindler A, Xu XS, Qu Q (2000) Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle source, regional variations, and tectonic significance. Chem Geol 171:33–47

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank Luc Doucet and another anonymous reviewer for the constructive comments that helped to improve the manuscript, and Daniela Rubatto for the efficient editorial handling. We acknowledge Chunhong Zhang, Wenwu Yang and Shansong Lu for their assistance with elemental and isotopic analysis. We are grateful to Wenguo Long, Jinbo Zhou, Guogang Xie and Zhongyan Zhang for help with the fieldwork. This work was supported by the National Natural Science Foundation of China (42202335), China Postdoctoral Science Foundation (2022M722953), the Geological Survey program of China (DD20221677 and DD20221647) and the Key Laboratory of Shallow Geothermal Energy, Ministry of Natural Resources of the People’s Republic of China (KLSGE202302-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyue Cao.

Ethics declarations

Conflict of interest

The authors declare that none of the authors has any competing interests.

Additional information

Communicated by Othmar Müntener.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, G., Tong, Y., Tang, X. et al. Deep recycling of crustal materials by the Hainan mantle plume: evidence from Zn–Sr–Nd–Pb isotopes of Hainan Island basalts. Contrib Mineral Petrol 179, 30 (2024). https://doi.org/10.1007/s00410-024-02112-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-024-02112-5

Keywords

Navigation