Skip to main content
Log in

Magmatic processes within the plumbing system of the ultraslow-spreading southwest Indian ridge: constraints from olivine, plagioclase and melt inclusions

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Processes taking place within the magma plumbing system can exert an important control on the composition of mid-ocean ridge basalts (MORB). Plagioclase ultraphyric basalts (PUBs) found at magma-poor mid-ocean ridges exhibit diverse disequilibrium characteristics, which can provide vital insights for distinguishing the complex effects of melt transport from those of source heterogeneity on the compositions of MORBs. Here, we present new insights into magmatic processes using integrated petrologic and geochemical studies of the PUBs from two zones (~ 50° and ~ 64°E longitude) along the ultraslow-spreading southwest Indian ridge (SWIR). The studied PUBs have complex mineral morphologies, including skeletal and acicular crystals, glomerocrysts with open and closed structure, reverse and normally zoned crystals and external and internal resorption even in single samples. Both low- and high-Fo olivine and An plagioclase crystals are in disequilibrium with their matrix glasses. Some plagioclase phenocrysts have repeated oscillatory zoning (An77–86) going from their core to rim and an abrupt decrease in An content toward the rim. Disequilibrium Sr isotopic compositions are present at several scales: between cores and rims of plagioclase crystals, between different plagioclase crystals and between plagioclase and their host lavas. Inferred pressures of magma storage range from 0.3 to 11.3 kbar. The textural and compositional diversity of crystals together with the variability in melt compositions reflect the combined influences of source heterogeneity and magmatic processes (e.g. crystallization, assimilation and magma mixing processes) taking place within crystal mushes. Our data combined with previous studies suggest that the magmatic processes within the SWIR magma plumbing system involve formation, disaggregation and juxtaposition of crystal-rich mush zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are availabe within the supplementatry materials.

References

  • Adams DT, Nielsen RL, Kent AJR, Tepley III FJ (2011) Origin of minor and trace element compositional diversity in anorthitic feldspar phenocrysts and melt inclusions from the Juan de Fuca Ridge. Geochem Geophys Geosyst 12(12):1–18

    Google Scholar 

  • Basch V, Sanfilippo A, Skolotnev SG, Ferrando C, Muccini F, Palmiotto C, Peyve AA, Ermolaev BV, Okina OI, Ligi M (2022) Genesis of oceanic oxide gabbros and gabbronorites during reactive melt migration at transform walls (Doldrums Megatransform System; 7–8°N Mid-Atlantic Ridge). J Petrol 63(9):egac086

  • Batanova VG, Suhr G, Sobolev AV (1998) Origin of geochemical heterogeneity in the mantle peridotites from the Bay of Islands Ophiolite, Newfoundland, Canada: ion probe study of clinopyroxenes. Geochim Cosmochim Acta 62(5):853–866

    ADS  CAS  Google Scholar 

  • Batiza R, Rosendahl BR, Fisher RL (1977) Evolution of oceanic crust: 3. Petrology and chemistry of basalts from the East Pacific Rise and the Siqueiros Transform Fault. J Geophys Res (1896–1977) 82(2):265–276

  • Bédard JH (1994) A procedure for calculating the equilibrium distribution of trace elements among the minerals of cumulate rocks, and the concentration of trace elements in the coexisting liquids. Chem Geol 118(1):143–153

    ADS  Google Scholar 

  • Bédard JH (2006) Trace element partitioning in plagioclase feldspar. Geochim Cosmochim Acta 70(14):3717–3742

    ADS  Google Scholar 

  • Bédard JH, Hebert R, Berclaz A, Varfalvy V (2000) Syntexis and the genesis of lower oceanic crust. In: Dilek Y, Moores EM, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust: new insights from field studies and the Ocean Drilling Program, vol 349. Geological Society of America, Boulder, p 0

  • Bennett EN, Lissenberg CJ, Cashman KV (2019a) The significance of plagioclase textures in mid-ocean ridge basalt (Gakkel Ridge, Arctic Ocean). Contrib Mineral Petrol 174(6):49

    ADS  PubMed  PubMed Central  Google Scholar 

  • Bennett EN, Jenner FE, Millet M-A, Cashman KV, Lissenberg CJ (2019b) Deep roots for mid-ocean-ridge volcanoes revealed by plagioclase-hosted melt inclusions. Nature 572(7768):235–239

    ADS  CAS  PubMed  Google Scholar 

  • Bergantz GW, Schleicher JM, Burgisser A (2015) Open-system dynamics and mixing in magma mushes. Nat Geosci 8(10):793–796

    ADS  CAS  Google Scholar 

  • Bernard A, Munschy M, Rotstein Y, Sauter D (2005) Refined spreading history at the Southwest Indian Ridge for the last 96 Ma, with the aid of satellite gravity data. Geophys J Int 162(3):765–778

    ADS  Google Scholar 

  • Blackman DK, Ildefonse B, John BE, Ohara Y, Miller DJ, MacLeod CJ (2006) Oceanic core complex formation, Atlantis Massif: expeditions 304 and 305 of the riserless drilling platform from and to Ponta Delgada, Azores (Portugal), Sites U1309–U1311, 17 November 2004–7 January 2005, and from and to Ponta Delgada, Azores (Portugal), Site U1309, 7 January–2 March 2005, vol 304/305. Proceedings of the Integrated Ocean Drilling Program, p 509

  • Borisov AA, Shapkin AI (1990) A new empirical equation rating Fe3+/Fe2+ in magmas to their composition, oxygen fugacity, and temperature. Geochem Int 27(1):111–116

    Google Scholar 

  • Bottinga Y, Weill D (1970) Densities of liquid silicate systems calculated from partial molar volumes of oxide components. Am J Sci 269:169–182

    ADS  CAS  Google Scholar 

  • Bottinga Y, Kudo A, Weill D (1966) Some observations on oscillatory zoning and crystallization of magmatic plagioclase. Am Mineral 51:15

    Google Scholar 

  • Boudier F, Nicolas A, Ildefonse B (1996) Magma chambers in the Oman ophiolite: fed from the top and the bottom. Earth Planet Sci Lett 144(1):239–250

    ADS  CAS  Google Scholar 

  • Boulanger M, France L (2023) Cumulate formation and melt extraction from mush-dominated magma reservoirs: the melt flush process exemplified at mid-ocean ridges. J Petrol 64(2):1

    CAS  Google Scholar 

  • Boulanger M, France L, Deans J, Ferrando C, Lissenberg J, von der Handt A (2020) Magma reservoir formation and evolution at a Slow-Spreading Center (Atlantis Bank, Southwest Indian Ridge). Front Earth Sci 8:1–24

    Google Scholar 

  • Boulanger M, France L, Ferrando C, Ildefonse B, Ghosh B, Sanfilippo A, Liu CZ, Morishita T, Koepke J, Bruguier O (2021) Magma-mush interactions in the lower oceanic crust: insights from Atlantis Bank layered series (Southwest Indian Ridge). J Geophys Res Solid Earth 126(9):e2021JB022331

  • Breton T, Nauret F, Pichat S, Moine B, Moreira M, Rose-Koga EF, Auclair D, Bosq C, Wavrant L (2013) Geochemical heterogeneities within the Crozet hotspot. Earth Planet Sci Lett 376:126–136

    ADS  CAS  Google Scholar 

  • Bryan WB (1983) Systematics of modal phenocryst assemblages in submarine basalts: petrologic implications. Contrib Mineral Petrol 83(1):62–74

    ADS  CAS  Google Scholar 

  • Cann JR (1974) A model for oceanic crystal structure developed. Geophys J R Astron Soc 39(1):169–187

    ADS  Google Scholar 

  • Cannat M, Rommevaux-Jestin C, Sauter D, Deplus C, Mendel V (1999) Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). J Geophys Res Solid Earth 104(B10):22825–22843

    Google Scholar 

  • Cannat M, Sauter D, Mendel V, Ruellan E, Okino K, Escartin J, Combier V, Baala M (2006) Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology 34(7):605–608

    ADS  Google Scholar 

  • Cannat M, Sauter D, Bezos A, Meyzen CM, Humler E, Le Rigoleur M (2008) Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochem Geophys Geosyst 9(4):1–26

    Google Scholar 

  • Cannatelli C, Doherty AL, Esposito R, Lima A, De Vivo B (2016) Understanding a volcano through a droplet: a melt inclusion approach. J Geochem Explor 171:4–19

    CAS  Google Scholar 

  • Chu D, Gordon RG (1999) Evidence for motion between Nubia and Somalia along the Southwest Indian ridge. Nature 398(6722):64–67

    ADS  CAS  Google Scholar 

  • Collier ML, Kelemen PB (2010) The case for reactive crystallization at mid-ocean ridges. J Petrol 51(9):1913–1940

    ADS  CAS  Google Scholar 

  • Colman A, Sinton JM, Rubin KH (2016) Magmatic processes at variable magma supply along the Galápagos Spreading Center: constraints from single eruptive units. J Petrol 57(5):981–1018

    ADS  CAS  Google Scholar 

  • Coogan LA, O’Hara MJ (2015) MORB differentiation: in situ crystallization in replenished-tapped magma chambers. Geochim Cosmochim Acta 158:147–161

    ADS  CAS  Google Scholar 

  • Coogan LA, Saunders AD, Kempton PD, Norry MJ (2000) Evidence from oceanic gabbros for porous melt migration within a crystal mush beneath the Mid-Atlantic Ridge. Geochem Geophys Geosyst 1(9):1–20

    Google Scholar 

  • Coogan LA, Thompson GM, MacLeod CJ, Dick HJB, Edwards SJ, Hosford Scheirer A, Barry TL (2004) A combined basalt and peridotite perspective on 14 million years of melt generation at the Atlantis Bank segment of the Southwest Indian Ridge: evidence for temporal changes in mantle dynamics? Chem Geol 207(1):13–30

    ADS  CAS  Google Scholar 

  • Coogan LA, Jenkin GRT, Wilson RN (2007) Contrasting cooling rates in the lower oceanic crust at fast- and slow-spreading ridges revealed by geospeedometry. J Petrol 48(11):2211–2231

    ADS  CAS  Google Scholar 

  • Coogan LA, Saunders AD, Wilson RN (2014) Aluminum-in-olivine thermometry of primitive basalts: evidence of an anomalously hot mantle source for large igneous provinces. Chem Geol 368:1–10

    ADS  CAS  Google Scholar 

  • Costa F, Coogan LA, Chakraborty S (2010) The time scales of magma mixing and mingling involving primitive melts and melt–mush interaction at mid-ocean ridges. Contrib Mineral Petrol 159(3):371–387

    ADS  CAS  Google Scholar 

  • Cottrell E, Spiegelman M, Langmuir CH (2002) Consequences of diffusive reequilibration for the interpretation of melt inclusions. Geochem Geophys Geosyst 3(4):1–26

    Google Scholar 

  • Coumans JP, Stix J, Clague DA, Minarik WG, Layne GD (2016) Melt-rock interaction near the Moho: evidence from crystal cargo in lavas from near-ridge seamounts. Geochim Cosmochim Acta 191:139–164

    ADS  CAS  Google Scholar 

  • Crawford WC, Webb SC, Hildebrand JA (1999) Constraints on melt in the lower crust and Moho at the East Pacific Rise, 9°48′N, using seafloor compliance measurements. J Geophys Res Solid Earth 104(B2):2923–2939

    Google Scholar 

  • Dalton CA, Langmuir CH, Gale A (2014) Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges. Science 344:80

    ADS  CAS  PubMed  Google Scholar 

  • Danyushevsky LV, Plechov P (2011) Petrolog3: integrated software for modeling crystallization processes. Geochem Geophys Geosyst 12(7):1–32

    Google Scholar 

  • Danyushevsky LV, Della-Pasqua FN, Sokolov S (2000) Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contrib Mineral Petrol 138(1):68–83

    ADS  CAS  Google Scholar 

  • Danyushevsky LV, Sokolov S, Falloon TJ (2002) Melt inclusions in olivine phenocrysts: using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks. J Petrol 43(9):1651–1671

    ADS  CAS  Google Scholar 

  • Danyushevsky LV, Perfit MR, Eggins SM, Falloon TJ (2003) Crustal origin for coupled ‘ultra-depleted’ and ‘plagioclase’ signatures in MORB olivine-hosted melt inclusions: evidence from the Siqueiros Transform Fault. East Pacific Rise Contrib Mineral Petrol 144(5):619–637

    ADS  CAS  Google Scholar 

  • Davidson JP, Morgan DJ, Charlier BLA, Harlou R, Hora JM (2007) Microsampling and isotopic analysis of igneous rocks: implications for the study of magmatic systems. Annu Rev Earth Planet Sci 35(1):273–311

    ADS  CAS  Google Scholar 

  • Davis AS, Clague DA (1987) Geochemistry, mineralogy, and petrogenesis of basalt from the Gorda Ridge. J Geophys Res Solid Earth 92(B10):10467–10483

    Google Scholar 

  • Detrick RS, Buhl P, Vera E, Mutter J, Orcutt J, Madsen J, Brocher T (1987) Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature 326(6108):35–41

    ADS  Google Scholar 

  • Dick HJB, Fisher RL, Bryan WB (1984) Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth Planet Sci Lett 69(1):88–106

    ADS  CAS  Google Scholar 

  • Dick HJB, Natland JH, Alt JC, Bach W, Bideau D, Gee JS, Haggas S, Hertogen JGH, Hirth G, Holm PM, Ildefonse B, Iturrino GJ, John BE, Kelley DS, Kikawa E, Kingdon A, LeRoux PJ, Maeda J, Meyer PS, Miller DJ, Naslund HR, Niu YL, Robinson PT, Snow JE, Stephen RA, Trimby PW, Worm H, Yoshinobu A (2000) A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth Planet Sci Lett 179(1):31–51

    ADS  CAS  Google Scholar 

  • Dick HJB, MacLeod CJ, Blum P, Abe N, Blackman DK, Bowles JA, Cheadle MJ, Cho K, Ciazela J, Deans JR, Edgcomb VP, Ferrando C, France L, Ghosh B, Ildefonse B, John B, Kendrick MA, Koepke J, Leong JAM, Liu C, Ma Q, Morishita T, Morris A, Natland JH, Nozaka T, Pluemper O, Sanfilippo A, Sylvan JB, Tivey MA, Tribuzio R, Viegas G (2019) Dynamic accretion beneath a slow-spreading ridge segment: IODP hole 1473A and the Atlantis Bank Oceanic core complex. J Geophys Res Solid Earth 124(12):12631–12659

    ADS  Google Scholar 

  • Drignon MJ, Nielsen RL, Tepley FJ III, Bodnar RJ (2018) Upper mantle origin of plagioclase megacrysts from plagioclase-ultraphyric mid-oceanic ridge basalt. Geology 47(1):43–46

    ADS  Google Scholar 

  • Drouin M, Godard M, Ildefonse B, Bruguier O, Garrido CJ (2009) Geochemical and petrographic evidence for magmatic impregnation in the oceanic lithosphere at Atlantis Massif, Mid-Atlantic Ridge (IODP Hole U1309D, 30°N). Chem Geol 264(1):71–88

    ADS  CAS  Google Scholar 

  • Drouin M, Ildefonse B, Godard M (2010) A microstructural imprint of melt impregnation in slow spreading lithosphere: olivine-rich troctolites from the Atlantis Massif, Mid-Atlantic Ridge, 30°N, IODP Hole U1309D. Geochem Geophys Geosyst 11(6):1–21

    Google Scholar 

  • Dungan MA, Rhodes JM (1978) Residual glasses and melt inclusions in basalts from DSDP Legs 45 and 46: evidence for magma mixing. Contrib Mineral Petrol 67(4):417–431

    ADS  CAS  Google Scholar 

  • Elthon D (1979) High magnesia liquids as the parental magma for ocean floor basalts. Nature 278(5704):514–518

    ADS  CAS  Google Scholar 

  • Elthon D (1987) Petrology of gabbroic rocks from the Mid-Cayman Rise Spreading Center. J Geophys Res Solid Earth 92(B1):658–682

    CAS  Google Scholar 

  • Feig ST, Koepke J, Snow JE (2006) Effect of water on tholeiitic basalt phase equilibria: an experimental study under oxidizing conditions. Contrib Mineral Petrol 152(5):611–638

    ADS  CAS  Google Scholar 

  • Ferrando C, Godard M, Ildefonse B, Rampone E (2018) Melt transport and mantle assimilation at Atlantis Massif (IODP Site U1309): constraints from geochemical modeling. Lithos 323:24–43

    ADS  CAS  Google Scholar 

  • Ferrando C, France L, Basch V, Sanfilippo A, Tribuzio R, Boulanger M (2021a) Grain size variations record segregation of residual melts in slow-spreading oceanic crust (Atlantis Bank, 57°E Southwest Indian Ridge). J Geophys Res Solid Earth 126(4):e2020JB020997

  • Ferrando C, Basch V, Ildefonse B, Deans J, Sanfilippo A, Barou F, France L (2021b) Role of compaction in melt extraction and accumulation at a slow spreading center: microstructures of olivine gabbros from the Atlantis Bank (IODP Hole U1473A, SWIR). Tectonophysics 815:229001

    Google Scholar 

  • Flower MFJ (1980) Accumulation of calcic plagioclase in ocean-ridge tholeiite: an indication of spreading rate? Nature 287(5782):530–532

    ADS  CAS  Google Scholar 

  • Font L, Murton BJ, Roberts S, Tindle AG (2007) Variations in melt productivity and melting conditions along SWIR (70°E–49°E): evidence from olivine-hosted and plagioclase-hosted melt inclusions. J Petrol 48(8):1471–1494

    ADS  CAS  Google Scholar 

  • Gaetani GA, Watson EB (2000) Open system behavior of olivine-hosted melt inclusions. Earth Planet Sci Lett 183(1):27–41

    ADS  CAS  Google Scholar 

  • Gao Y, Hoefs J, Hellebrand E, von der Handt A, Snow JE (2007) Trace element zoning in pyroxenes from ODP Hole 735B gabbros: diffusive exchange or synkinematic crystal fractionation? Contrib Mineral Petrol 153(4):429–442

    ADS  CAS  Google Scholar 

  • Gao C, Dick HJB, Liu Y, Zhou H (2016) Melt extraction and mantle source at a Southwest Indian Ridge Dragon Bone amagmatic segment on the Marion Rise. Lithos 246–247:48–60

    ADS  Google Scholar 

  • Garcia MO, Pietruszka AJ, Rhodes JM (2003) A petrologic perspective of Kīlauea Volcano’s summit magma reservoir. J Petrol 44(12):2313–2339

    ADS  CAS  Google Scholar 

  • Gavrilenko M, Herzberg C, Vidito C, Carr MJ, Tenner T, Ozerov A (2016) A calcium-in-olivine geohygrometer and its application to subduction zone magmatism. J Petrol 57(9):1811–1832

    ADS  CAS  Google Scholar 

  • Gurenko AA, Sobolev AV (2006) Crust–primitive magma interaction beneath neovolcanic rift zone of Iceland recorded in gabbro xenoliths from Midfell. SW Iceland Contrib Mineral Petrol 151(5):495–520

    ADS  CAS  Google Scholar 

  • Hansen H, Grönvold K (2000) Plagioclase ultraphyric basalts in Iceland: the mush of the rift. J Volcanol Geotherm Res 98(1):1–32

    ADS  CAS  Google Scholar 

  • Heinonen JS, Jennings ES, Riley TR (2015) Crystallisation temperatures of the most Mg-rich magmas of the Karoo LIP on the basis of Al-in-olivine thermometry. Chem Geol 411:26–35

    ADS  CAS  Google Scholar 

  • Hellevang B, Pedersen RB (2008) Magma ascent and crustal accretion at ultraslow-spreading ridges: constraints from Plagioclase Ultraphyric Basalts from the Arctic Mid-Ocean Ridge. J Petrol 49(2):267–294

    ADS  CAS  Google Scholar 

  • Herzberg C (2004) Partial crystallization of mid-ocean ridge basalts in the crust and mantle. J Petrol 45(12):2389–2405

    ADS  CAS  Google Scholar 

  • Herzberg C, Asimow PD (2015) PRIMELT3 MEGA.XLSM software for primary magma calculation: peridotite primary magma MgO contents from the liquidus to the solidus. Geochem Geophys Geosyst 16(2):563–578

  • Hesse M, Grove TL (2003) Absarokites from the western Mexican volcanic belt: constraints on mantle wedge conditions. Contrib Mineral Petrol 146(1):10–27

    ADS  CAS  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90(3):297–314

    ADS  CAS  Google Scholar 

  • Hooft EEE, Detrick RS, Kent GM (1997) Seismic structure and indicators of magma budget along the Southern East Pacific Rise. J Geophys Res Solid Earth 102(B12):27319–27340

    CAS  Google Scholar 

  • Janney PE (2005) Hafnium isotope and trace element constraints on the nature of mantle heterogeneity beneath the Central Southwest Indian Ridge (13 E to 47 E). J Petrol 46:2427

    ADS  CAS  Google Scholar 

  • Jian HC, Singh SC, Chen YJ, Li JB (2017) Evidence of an axial magma chamber beneath the ultraslow-spreading Southwest Indian Ridge. Geology 45(2):143–146

    ADS  Google Scholar 

  • Kamenetsky VS, Maas R, Kamenetsky MB, Yaxley GM, Ehrig K, Zellmer GF, Bindeman IN, Sobolev AV, Kuzmin DV, Ivanov AV, Woodhead J, Schilling J-G (2017) Multiple mantle sources of continental magmatism: insights from “high-Ti” picrites of Karoo and other large igneous provinces. Chem Geol 455:22–31

    ADS  CAS  Google Scholar 

  • Kent AJR (2008) Melt inclusions in basaltic and related volcanic rocks. Rev Mineral Geochem 69(1):273–331

    CAS  Google Scholar 

  • Klein EM, Langmuir CH (1987) Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J Geophys Res Solid Earth 92(B8):8089–8115

    CAS  Google Scholar 

  • Kudo AM, Weill DF (1970) An igneous plagioclase thermometer. Contrib Mineral Petrol 25(1):52–65

    ADS  CAS  Google Scholar 

  • Kushiro I, Fujii T (1977) Floatation of plagioclase in magma at high pressures and its bearing on the origin of anorthosite. Proc Japan Acad Ser B 53(7):262–266

    ADS  Google Scholar 

  • Kvassnes AJS, Grove TL (2008) How partial melts of mafic lower crust affect ascending magmas at oceanic ridges. Contrib Mineral Petrol 156(1):49–71

    ADS  CAS  Google Scholar 

  • Lange RA, Carmichael ISE (1987) Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: new measurements and derived partial molar properties. Geochim Cosmochim Acta 51(11):2931–2946

    ADS  CAS  Google Scholar 

  • Lange AE, Nielsen RL, Tepley FJ III, Kent AJR (2013) The petrogenesis of plagioclase-phyric basalts at mid-ocean ridges. Geochem Geophys Geosyst 14(8):3282–3296

    ADS  CAS  Google Scholar 

  • Langmuir CH (1989) Geochemical consequences of in situ crystallization. Nature 340(6230):199–205

    ADS  CAS  Google Scholar 

  • Latypov RM, Chistyakova SY, Namur O, Barnes S (2020) Dynamics of evolving magma chambers: textural and chemical evolution of cumulates at the arrival of new liquidus phases. Earth Sci Rev 210:103388

    CAS  Google Scholar 

  • Laubier M, Gale A, Langmuir CH (2012) Melting and crustal processes at the FAMOUS segment (Mid-Atlantic Ridge): new insights from olivine-hosted melt inclusions from multiple samples. J Petrol 53(4):665–698

    ADS  CAS  Google Scholar 

  • Le Roex AP, Dick HJB, Fisher RL (1989) Petrology and geochemistry of MORB from 25°E to 46°E along the Southwest Indian Ridge: evidence for contrasting styles of mantle enrichment*. J Petrol 30(4):947–986

    ADS  Google Scholar 

  • Le Voyer M, Hauri EH, Cottrell E, Kelley KA, Salters VJM, Langmuir CH, Hilton DR, Barry PH, Füri E (2019) Carbon fluxes and primary magma CO2 contents along the global mid-ocean ridge system. Geochem Geophys Geosyst 20(3):1387–1424

    ADS  Google Scholar 

  • Leuthold J, Lissenberg CJ, O’Driscoll B, Karakas O, Falloon T, Klimentyeva DN, Ulmer P (2018) Partial melting of lower oceanic crust gabbro: constraints from poikilitic clinopyroxene primocrysts. Front Earth Sci 6:1–20

    Google Scholar 

  • Li W (2017) Petrogeochemical characteristics of basalts from Southwest Indian Ridge: implications for magmatic processes at ultra-slow spreading ridge. Doctor thesis, China University of Geosciences

  • Li C, Thakurta J, Ripley EM (2012) Low-Ca contents and kink-banded textures are not unique to mantle olivine: evidence from the Duke Island Complex. Alaska Mineral Petrol 104(3):147–153

    ADS  CAS  Google Scholar 

  • Li JB, Jian HC, Chen YJ, Singh SC, Ruan AG, Qiu XL, Zhao MH, Wang XG, Niu XW, Ni JY, Zhang JZ (2015) Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge. Geophys Res Lett 42(8):2656–2663

    ADS  Google Scholar 

  • Lindsley DH, Frost BR (1992) Equilibria among Fe-Ti oxides, pyroxenes, olivine, and quartz: part I. Theory Am Mineral 77:987–1003

    CAS  Google Scholar 

  • Lissenberg CJ, Dick HJB (2008) Melt–rock reaction in the lower oceanic crust and its implications for the genesis of mid-ocean ridge basalt. Earth Planet Sci Lett 271(1):311–325

    ADS  CAS  Google Scholar 

  • Lissenberg CJ, MacLeod CJ (2017) A reactive porous flow control on mid-ocean ridge magmatic evolution. J Petrol 57(11–12):2195–2220

    ADS  Google Scholar 

  • Lissenberg CJ, MacLeod CJ, Howard KA, Godard M (2013) Pervasive reactive melt migration through fast-spreading lower oceanic crust (Hess Deep, equatorial Pacific Ocean). Earth Planet Sci Lett 361:436–447

    ADS  CAS  Google Scholar 

  • Lissenberg CJ, MacLeod CJ, Bennett EN (2019) Consequences of a crystal mush-dominated magma plumbing system: a mid-ocean ridge perspective. Philos Trans Roy Soc A Math Phys Eng Sci 377(2139):20180014

    ADS  Google Scholar 

  • Livermore RA, Hunter RJ (1996) Mesozoic seafloor spreading in the southern Weddell Sea. Geol Soc Lond Special Publ 108(1):227–241

    ADS  Google Scholar 

  • Lofgren G (1974) An experimental study of plagioclase crystal morphology; isothermal crystallization. Am J Sci 274(3):243–273

    ADS  CAS  Google Scholar 

  • Longhi J, Fram MS, Vander Auwera J, Montieth JN (1993) Pressure effects, kinetics, and rheology of anorthositic and related magmas. Am Mineral 78(9–10):1016–1030

    CAS  Google Scholar 

  • Maclennan J (2008) Lead isotope variability in olivine-hosted melt inclusions from Iceland. Geochim Cosmochim Acta 72(16):4159–4176

    ADS  CAS  Google Scholar 

  • Mahoney J, Le Roex AP, Peng Z, Fisher RL, Natland JH (1992) Southwestern limits of Indian Ocean Ridge Mantle and the origin of low 206Pb/204Pb mid-ocean ridge basalt: isotope systematics of the central Southwest Indian Ridge (17°–50°E). J Geophys Res Solid Earth 97(B13):19771–19790

    CAS  Google Scholar 

  • Mallick S, Dick HJB, Sachi-Kocher A, Salters VJM (2014) Isotope and trace element insights into heterogeneity of subridge mantle. Geochem Geophys Geosyst 15(6):2438–2453

    ADS  CAS  Google Scholar 

  • Marsh BD (1989) Magma chambers. Annu Rev Earth Planet Sci 17(1):439–472

    ADS  CAS  Google Scholar 

  • Matthews S, Shorttle O, Maclennan J (2016) The temperature of the Icelandic mantle from olivine-spinel aluminum exchange thermometry. Geochem Geophys Geosyst 17(11):4725–4752

    ADS  Google Scholar 

  • Meyer PS, Dick HJB, Thompson G (1989) Cumulate gabbros from the Southwest Indian Ridge, 54°S-7° 16′ E: implications for magmatic processes at a slow spreading ridge. Contrib Mineral Petrol 103(1):44–63

    ADS  CAS  Google Scholar 

  • Meyzen CM, Toplis MJ, Humler E, Ludden JN, Mevel C (2003) A discontinuity in mantle composition beneath the southwest Indian ridge. Nature 421(6924):731–733

    ADS  CAS  PubMed  Google Scholar 

  • Meyzen CM, Ludden JN, Humler E, Luais B, Toplis MJ, Mével C, Storey M (2005) New insights into the origin and distribution of the DUPAL isotope anomaly in the Indian Ocean mantle from MORB of the Southwest Indian Ridge. Geochem Geophys Geosyst 6(11):1–34

    Google Scholar 

  • Meyzen CM, Blichert-Toft J, Ludden JN, Humler E, Mével C, Albarède F (2007) Isotopic portrayal of the Earth’s upper mantle flow field. Nature 447(7148):1069–1074

    ADS  CAS  PubMed  Google Scholar 

  • Muller MR, Minshull TA, White RS (1999) Segmentation and melt supply at the Southwest Indian Ridge. Geology 27(10):867–870

    ADS  Google Scholar 

  • Neave DA, Maclennan J, Hartley ME, Edmonds M, Thordarson T (2014) Crystal storage and transfer in Basaltic systems: the Skuggafjöll Eruption. Iceland J Petrol 55(12):2311–2346

    ADS  CAS  Google Scholar 

  • Neave DA, Hartley ME, Maclennan J, Edmonds M, Thordarson T (2017) Volatile and light lithophile elements in high-anorthite plagioclase-hosted melt inclusions from Iceland. Geochim Cosmochim Acta 205:100–118

    ADS  CAS  Google Scholar 

  • Nielsen RL (2011) The effects of re-homogenization on plagioclase hosted melt inclusions. Geochem Geophys Geosyst 12(10):1–16

    Google Scholar 

  • Nielsen RL, Ustunisik G, Lange AE, Tepley III FJ, Kent AJR (2020) Trace element and isotopic characteristics of plagioclase megacrysts in Plagioclase Ultraphyric Basalts (PUB). Geochem Geophys Geosyst 21(2):e2019GC008638

  • Niu YL, Batiza R (1991) DENSCAL: program for calculating densities of silicate melts and mantle minerals as a function of pressure, temperature, and composition in melting range. Comput Geosci 17(5):679–687

    ADS  CAS  Google Scholar 

  • Niu YL, O’Hara MJ (2008) Global correlations of ocean ridge basalt chemistry with axial depth: a new perspective. J Petrol 49(4):633–664

    ADS  CAS  Google Scholar 

  • Niu XW, Ruan AG, Li JB, Minshull TA, Sauter D, Wu ZL, Qiu XL, Zhao MH, Chen YJ, Singh S (2015) Along-axis variation in crustal thickness at the ultraslow spreading Southwest Indian Ridge (50°E) from a wide-angle seismic experiment. Geochem Geophys Geosyst 16(2):468–485

    ADS  Google Scholar 

  • O’Neill HSC, Jenner FE (2012) The global pattern of trace-element distributions in ocean floor basalts. Nature 491(7426):698–704

    ADS  PubMed  Google Scholar 

  • O’Neill HSC, Jenner FE (2017) Causes of the compositional variability among ocean floor basalts. J Petrol 57(11–12):2163–2194

    ADS  Google Scholar 

  • Pan YC, Batiza R (2003) Magmatic processes under mid-ocean ridges: a detailed mineralogic study of lavas from East Pacific Rise 9 degrees 30ʹ N, 10 degrees 30ʹ N, and 11 degrees 20ʹ N. Geochem Geophys Geosyst 4:33

    Google Scholar 

  • Panjasawatwong YY, Danyushevsky LV, Crawford AJ, Harris KL (1995) An experimental study of the effects of melt composition on plagioclase–melt equilibria at 5 and 10 kbar: implications for the origin of magmatic high-An plagioclase. Contrib Mineral Petrol 118(4):420–432

    ADS  CAS  Google Scholar 

  • Paquet M, Cannat M, Brunelli D, Hamelin C, Humler E (2016) Effect of melt/mantle interactions on MORB chemistry at the easternmost Southwest Indian Ridge (61°–67°E). Geochem Geophys Geosyst 17(11):4605–4640

    ADS  Google Scholar 

  • Passmore E, Maclennan J, Fitton G, Thordarson T (2012) Mush disaggregation in Basaltic Magma chambers: evidence from the ad 1783 Laki Eruption. J Petrol 53(12):2593–2623

    ADS  CAS  Google Scholar 

  • Perugini D, Poli G (2005) Viscous fingering during replenishment of felsic magma chambers by continuous inputs of mafic magmas: field evidence and fluid-mechanics experiments. Geology 33(1):5–8

    ADS  Google Scholar 

  • Putirka KD (2008) 3. Thermometers and barometers for volcanic systems. In: Keith DP, Frank JT, III (eds) Minerals, inclusions and volcanic processes. De Gruyter, Berlin, pp 61–120. https://doi.org/10.1515/9781501508486-004

  • Ridley WI, Perfit MR, Smith MC, Fornari DJ (2006) Magmatic processes in developing oceanic crust revealed in a cumulate xenolith collected at the East Pacific Rise, 9°50′N. Geochem Geophys Geosyst 7(12):1–26

    Google Scholar 

  • Robie RA, Bethke PM, Toulmin MS, Edwards JL (1966) Section 5: X-ray crystallographic data, densities, and molar volumes of minerals. In: Clark SP, Jr. (ed) Handbook of physical constants, vol 97. Geological Society of America, New York, p 0

  • Roeder PL, Emslie RF (1970) Olivine–liquid equilibrium. Contrib Mineral Petrol 29(4):275–289

    ADS  CAS  Google Scholar 

  • Rose-Koga EF, Bouvier AS, Gaetani GA et al (2021) Silicate melt inclusions in the new millennium: a review of recommended practices for preparation, analysis, and data presentation. Chem Geol 570:120145

    CAS  Google Scholar 

  • Rubin KH, Sinton JM (2007) Inferences on mid-ocean ridge thermal and magmatic structure from MORB compositions. Earth Planet Sci Lett 260(1):257–276

    ADS  CAS  Google Scholar 

  • Rubin KH, Sinton JM, Maclennan J, Hellebrand E (2009) Magmatic filtering of mantle compositions at mid-ocean-ridge volcanoes. Nat Geosci 2(5):321–328

    ADS  CAS  Google Scholar 

  • Salters VJM, White WM (1998) Hf isotope constraints on mantle evolution. Chem Geol 145(3):447–460

    ADS  CAS  Google Scholar 

  • Sanfilippo A, Tribuzio R, Tiepolo M, Berno D (2015) Reactive flow as dominant evolution process in the lowermost oceanic crust: evidence from olivine of the Pineto ophiolite (Corsica). Contrib Mineral Petrol 170(4):38

    ADS  Google Scholar 

  • Sanfilippo A, MacLeod CJ, Tribuzio R, Lissenberg CJ, Zanetti A (2020) Early-stage melt-rock reaction in a cooling crystal mush beneath a slow-spreading mid-ocean ridge (IODP Hole U1473A, Atlantis Bank, Southwest Indian Ridge). Front Earth Sci 8:1–21

    Google Scholar 

  • Sauter D, Cannat M, Meyzen C, Bezos A, Patriat P, Humler E, Debayle E (2009) Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20′E: interaction with the Crozet hotspot? Geophys J Int 179(2):687–699

    ADS  Google Scholar 

  • Schiano P (2003) Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals. Earth Sci Rev 63(1):121–144

    ADS  CAS  Google Scholar 

  • Schiano P, Clocchiatti R, Boivin P, Medard E (2004) The nature of melt inclusions inside minerals in an ultramafic cumulate from Adak Volcanic Center, Aleutian Arc: implications for the origin of high-Al basalts. Chem Geol 203(1):169–179

    ADS  CAS  Google Scholar 

  • Schleicher JM, Bergantz GW (2017) The mechanics and temporal evolution of an open-system magmatic intrusion into a crystal-rich magma. J Petrol 58(6):1059–1072

    ADS  CAS  Google Scholar 

  • Searle R (2013) Mid-ocean ridges. Cambridge University Press, Cambridge

    Google Scholar 

  • Singh SC, Kent GM, Collier JS, Harding AJ, Orcutt JA (1998) Melt to mush variations in crustal magma properties along the ridge crest at the southern East Pacific Rise. Nature 394(6696):874–878

    ADS  CAS  Google Scholar 

  • Singh SC, Crawford WC, Carton H, Seher T, Combier V, Cannat M, J. PC, Düsünür D, Escartin J, J. MM, (2006) Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field. Nature 442(7106):1029–1032

    ADS  CAS  PubMed  Google Scholar 

  • Sinha MC, Constable SC, Peirce C, White A, Heinson G, MacGregor LM, Navin DA (1998) Magmatic processes at slow spreading ridges: implications of the RAMESSES experiment at 57° 45′N on the Mid-Atlantic Ridge. Geophys J Int 135(3):731–745

    ADS  Google Scholar 

  • Sinton JM, Detrick RS (1992) Mid-ocean ridge magma chambers. J Geophys Res Solid Earth 97(B1):197–216

    CAS  Google Scholar 

  • Sinton CW, Christie DM, Coombs VL, Nielsen RL, Fisk MR (1993) Near-primary melt inclusions in anorthite phenocrysts from the Galapagos Platfrom. Earth Planet Sci Lett 119(4):527–537

    ADS  CAS  Google Scholar 

  • Sparks RSJ, Annen C, Blundy JD, Cashman KV, Rust AC, Jackson MD (2019) Formation and dynamics of magma reservoirs. Philos Trans Roy Soc A Math Phys Eng Sci 377(2139):20180019

    ADS  CAS  Google Scholar 

  • Spice HE, Fitton JG, Kirstein LA (2016) Temperature fluctuation of the Iceland mantle plume through time. Geochem Geophys Geosyst 17(2):243–254

    ADS  Google Scholar 

  • Starkey NA, Fitton JG, Stuart FM, Larsen LM (2012) Melt inclusions in olivines from early Iceland plume picrites support high 3He/4He in both enriched and depleted mantle. Chem Geol 306–307:54–62

    ADS  Google Scholar 

  • Stracke A, Bizimis M, Salters VJM (2003) Recycling oceanic crust: quantitative constraints. Geochem Geophys Geosyst 4(3):1–33

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Special Publ 42:313

    ADS  Google Scholar 

  • Tao C, Li H, Jin X, Zhou J, Wu T, He Y, Deng X, Gu C, Zhang G, Liu W (2014) Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge. Chin Sci Bull 59(19):2266–2276

    CAS  Google Scholar 

  • Thompson RN, Gibson SA (2000) Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature 407(6803):502–506

    ADS  CAS  PubMed  Google Scholar 

  • Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149(1):22–39

    ADS  CAS  Google Scholar 

  • Trela J, Gazel E, Sobolev AV, Moore L, Bizimis M, Jicha B, Batanova VG (2017) The hottest lavas of the Phanerozoic and the survival of deep Archaean reservoirs. Nat Geosci 10(6):451–456

    ADS  CAS  Google Scholar 

  • Turner JS, Campbell IH (1986) Convection and mixing in magma chambers. Earth Sci Rev 23(4):255–352

    ADS  CAS  Google Scholar 

  • Ulmer P (1989) The dependence of the Fe2+-Mg cation-partitioning between olivine and basaltic liquid on pressure, temperature and composition. Contrib Mineral Petrol 101(3):261–273

    ADS  CAS  Google Scholar 

  • Valer M, Bachelery P, Schiano P (2017) The Petrogenesis of Plagioclase-ultraphyric Basalts from La R, union Island. J Petrol 58(4):675–698

    ADS  CAS  Google Scholar 

  • Vance JA (1969) On synneusis. Contrib Mineral Petrol 24(1):7–29

    ADS  Google Scholar 

  • Vance JA, Gilreath JP (1967) The effect of synneusis on phenocryst distribution patterns in some porphyritic igneous rocks. Am Mineral 52(3–4):529–536

    CAS  Google Scholar 

  • Wager LR, Brown GM, Wadsworth WJ (1960) Types of igneous cumulates. J Petrol 1(1):73–85

    ADS  CAS  Google Scholar 

  • Walker D, Shibata T, DeLong SE (1979) Abyssal tholeiites from the oceanographer fracture zone. Contrib Mineral Petrol 70(2):111–125

    ADS  CAS  Google Scholar 

  • Wan ZH, Coogan LA, Canil D (2008) Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. Am Mineral 93(7):1142–1147

    ADS  CAS  Google Scholar 

  • Wang JR, Chen WF, Zhang Q, Jiao ST, Yang J, Pan ZJ, Wang S (2017) Preliminary research on data mining of N-MORB and E-MORB: discussion on method of the basalt discrimination diagrams and the character of MORB’s mantle source. Acta Petrol Sin 33(3):993–1005

    CAS  Google Scholar 

  • Wang W, Kelley KA, Li Z, Chu F, Dong Y, Chen L, Dong Y, Li J (2021) Volatile element evidence of local MORB mantle heterogeneity beneath the Southwest Indian Ridge, 48°–51°E. Geochem Geophys Geosyst 22(7):e2021GC009647

  • Whitehead JA, Helfrich KR (1991) Instability of flow with temperature-dependent viscosity: a model of magma dynamics. J Geophys Res Solid Earth 96(B3):4145–4155

    Google Scholar 

  • Xu R, Liu YS (2016) Al-in-olivine thermometry evidence for the mantle plume origin of the Emeishan large igneous province. Lithos 266–267:362–366

    ADS  Google Scholar 

  • Xu M, Pablo Canales J, Carbotte SM, Carton H, Nedimović MR, Mutter JC (2014) Variations in axial magma lens properties along the East Pacific Rise (9°30′N–10°00′N) from swath 3-D seismic imaging and 1-D waveform inversion. J Geophys Res Solid Earth 119(4):2721–2744

    ADS  Google Scholar 

  • Yang HJ, Kinzler RJ, Grove TL (1996) Experiments and models of anhydrous, basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar. Contrib Mineral Petrol 124(1):1–18

  • Yang AY, Zhao T-P, Zhou M-F, Deng X-G (2017) Isotopically enriched N-MORB: a new geochemical signature of off-axis plume-ridge interaction – a case study at 50°28′E, Southwest Indian Ridge. J Geophys Res Solid Earth 122(1):191–213

    ADS  CAS  Google Scholar 

  • Yang AY, Wang C, Liang Y, Lissenberg CJ (2019) Reaction between mid-ocean ridge basalt and lower oceanic crust: an experimental study. Geochem Geophys Geosyst 20(9):4390–4407

    ADS  CAS  Google Scholar 

  • Yu X, Dick HJB (2020) Plate-driven micro-hotspots and the evolution of the Dragon Flag melting anomaly, Southwest Indian Ridge. Earth Planet Sci Lett 531:116002

    CAS  Google Scholar 

  • Zellmer GF, Rubin KH, Dulski P, Iizuka Y, Goldstein SL, Perfit MR (2011) Erratum to: Crystal growth during dike injection of MOR basaltic melts: evidence from preservation of local Sr disequilibria in plagioclase. Contrib Mineral Petrol 161(1):175–176

    ADS  CAS  Google Scholar 

  • Zhang GL, Zeng ZG, Beier C, Yin XB, Turner S (2010) Generation and evolution of magma beneath the East Pacific Rise: constraints from U-series disequilibrium and plagioclase-hosted melt inclusions. J Volcanol Geotherm Res 193(1):1–17

    ADS  CAS  Google Scholar 

  • Zhang T, Lin J, Gao J (2011) Interactions between hotspots and the Southwest Indian Ridge during the last 90 Ma: implications on the formation of oceanic plateaus and intra-plate seamounts. Sci China Earth Sci 54(8):1177–1188

    ADS  Google Scholar 

  • Zhang WQ, Liu CZ, Dick HJB (2020) Evidence for multi-stage melt transport in the lower ocean crust: the Atlantis Bank Gabbroic Massif (IODP Hole U1473A, SW Indian Ridge). J Petrol 61(9):1–33

    Google Scholar 

  • Zhang WQ, Dick HJB, Liu CZ, Lin YZ, Angeloni LM (2021a) MORB melt transport through Atlantis Bank Oceanic Batholith (SW Indian Ridge). J Petrol 62(6):1–35

    Google Scholar 

  • Zhang L, Qian SP, Li N, Hong LB, Zhang YQ, Ren ZY (2021b) Simultaneous in situ determination of Pb isotope ratios and trace element concentrations in melt inclusions by LASS-ICP-MS. Geochem Geophys Geosyst 22(1):e2020GC009451

  • Zhou HY, Dick HJB (2013) Thin crust as evidence for depleted mantle supporting the Marion Rise. Nature 494(7436):195–200

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editor Hans Keppler and two anonymous reviewers for their constructive and helpful reviews. Readers can access our data in Supporting Information. We thank China Ocean Sample Repository for providing some samples. Q.O. would like to acknowledge Ming Su, Hao Zheng, Ce Wang and Chi-Hua Wu for their comments and suggestions, when he gave a report at the School of Marine Sciences, Sun Yat-Sen University. Financial support for this research was provided by the Opening Foundation of State Key Laboratory of Continental Dynamics, Northwest University (20LCD08) and Provincial Natural Science Foundation of Sichuan (No. 23NSFSC2894).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quan Ou or Sheng-Ping Qian.

Additional information

Communicated by Dante Canil.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, Q., Qian, SP., Hoernle, K. et al. Magmatic processes within the plumbing system of the ultraslow-spreading southwest Indian ridge: constraints from olivine, plagioclase and melt inclusions. Contrib Mineral Petrol 179, 20 (2024). https://doi.org/10.1007/s00410-024-02098-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-024-02098-0

Keywords

Navigation