Skip to main content

Advertisement

Log in

The solubility of titanite in silicate melt determined from growth and dissolution experiments

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The solubility of titanite (CaTiSiO5) in Si-rich melts was measured experimentally through growth experiments at 800–1000 °C, 0.5–1.0 GPa, log fO2 ~ CCO–0.8, t = 72–168 h, and H2O = 0 to 4 wt.%, and in dissolution experiments at 925–1300 °C, 0.8 GPa, t = 18–118 h, and H2O = 1–10 wt.% in a piston-cylinder apparatus. Run product glasses in growth experiments were homogeneous, and iron loss suppressed ilmenite crystallization. Saturation concentrations in dissolution experiments were estimated by fitting measured diffusion profiles. Titanite solubility increases with increasing temperature and melt composition parameter \(M = {\text{ molar }}\left( {{\text{Na }} + {\text{ K }} + {\text{ 2Ca}}} \right)/\left( {{\text{Al }} \times {\text{ Si}}} \right)\). Multiple linear regression of glass composition data from growth and dissolution experiments (n = 29) plus 39 experiments from the LEPR database (Hirschmann et al. 2008) yielded the titanite solubility equation (adj. r2 = 0.95): \(\left( {TiO_{2} } \right)^{melt} \left( {wt.\% } \right) = 0.978 \times M + 0.0048 \times T\left( K \right){-}5.90\). This model correctly predicted undersaturation in 95% of 2344 experiments from the LEPR database that did not have titanite or rutile. Application to natural rocks yields saturation temperatures that are similar to independent temperature estimates. This equation should be useful for constraining the temperatures of titanite-saturated melts, for determining whether titanite saturation in magmatic source regions is likely, and for determining when titanite can crystallize and begin to exert an influence on melt geochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Software used for data analysis and input and output files are available at https://github.com/johncayers/TitaniteExpts.git. Additional images, compositional data from experiments and diffusion profile fits, mass balance calculations, and the LEPR data downloaded and used in the titanite solubility model are available at https://figshare.com/projects/Titanite_solubility_in_silicate_melt_supporting_data/123787.

References

  • Ackerson MR, Mysen BO (2020) Experimental observations of TiO2 activity in rutile-undersaturated melts. Am Mineral 105:1547–1555. https://doi.org/10.2138/am-2020-7391

    Article  Google Scholar 

  • Anderson JL, Barth AP, Wooden JL, Mazdab F (2008) Thermometers and thermobarometers in granitic systems. Rev Mineral Geochem 69:121–142. https://doi.org/10.2138/rmg.2008.69.4

    Article  Google Scholar 

  • Ayers JC, Brenan JB, Watson EB et al (1992) A new capsule technique for hydrothermal experiments using the piston cylinder apparatus. Amer Min 77:1080–1086

    Google Scholar 

  • Ayers JC, Flanagan DM, Miller CF et al (2018) Solubility of sphene in siliceous melts. In: GSA National Meeting, Indianapolis, IN. Paper #137–10. https://gsa.confex.com/gsa/2018AM/webprogram/Paper320568.html

  • Bachmann O, Bergantz GW (2009) Rhyolites and their source mushes across tectonic settings. J Petrol 49:2277–2285. https://doi.org/10.1093/petrology/egn068

    Article  Google Scholar 

  • Bachmann O, Dungan MA (2002) Temperature-induced Al-zoning in hornblendes of the fish canyon magma, Colorado. Am Mineral 87:1062–1076. https://doi.org/10.2138/am-2002-8-903

    Article  Google Scholar 

  • Bachmann O, Dungan MA, Lipman PW (2002) The fish canyon magma body, San Juan volcanic field, Colorado: rejuvenation and eruption of an upper-crustal batholith. J Petrol 43:1469–1503

    Article  Google Scholar 

  • Bachmann O, Dungan MA, Bussy F (2005) Insights into shallow magmatic processes in large silicic magma bodies: the trace element record in the fish canyon magma body. Colorado Contrib to Mineral Petrol 149:338–349

    Article  Google Scholar 

  • Boehnke P, Watson EB, Trail D et al (2013) Zircon saturation re-revisited. Chem Geol 351:324–334. https://doi.org/10.1016/j.chemgeo.2013.05.028

    Article  Google Scholar 

  • Borisov A, Aranovich L (2019) Zircon solubility in silicate melts: new experiments and probability of zircon crystallization in deeply evolved basic melts. Chem Geol 510:103–112

    Article  Google Scholar 

  • Colombini L, Miller C, Gualda G et al (2011) Sphene and zircon in the highland range volcanic sequence (Miocene, southern Nevada, USA): elemental partitioning, phase relations, and influence on evolution of silicic magma. Mineral Petrol 102:29–50. https://doi.org/10.1007/s00710-011-0177-3

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1982) Sphene (titanite). In: Rock forming silicates vol 1A. Orthosilicates, Longman, pp 443–466

  • Foley ML, Miller CF, Gualda GAR (2020) Architecture of a super-sized magma chamber and remobilization of its basal cumulate (Peach Spring Tuff, USA). J Petrol. https://doi.org/10.1093/petrology/egaa020

    Article  Google Scholar 

  • Franz G, Spear FS (1985) Aluminous titanite (sphene) from the Eclogite zone, south-central Tauern window, Austria. Chem Geol 50:33–46. https://doi.org/10.1016/0009-2541(85)90110-X

    Article  Google Scholar 

  • Frost BR, Chamberlain KR, Schumacher JC (2000) Sphene (titanite): phase relations and role as a geochronometer. Chem Geol 172:131–145

    Article  Google Scholar 

  • Gervasoni F, Klemme S, Rocha-Júnior ERV, Berndt J (2016) Zircon saturation in silicate melts: a new and improved model for aluminous and alkaline melts. Contrib to Mineral Petrol 171:1–12. https://doi.org/10.1007/s00410-016-1227-y

    Article  Google Scholar 

  • Ghiorso MS, Gualda GAR (2013) A method for estimating the activity of titania in magmatic liquids from the compositions of coexisting rhombohedral and cubic iron–titanium oxides. Contrib to Mineral Petrol 165:73–81

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. a revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib to Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Glazner AF, Coleman DS, Bartley JM (2008) The tenuous connection between high-silica rhyolites and granodiorite plutons. Geology 36:183–186. https://doi.org/10.1130/g24496a.1

    Article  Google Scholar 

  • Green TH, Pearson NJ (1987) An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochim Cosmochim Acta 51:55–62

    Article  Google Scholar 

  • Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTS: a modified Calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53:875–890. https://doi.org/10.1093/petrology/egr080

    Article  Google Scholar 

  • Harlov D, Tropper P, Seifert W et al (2006) Formation of Al-rich titanite (CaTiSiO4O–CaAlSiO4OH) reaction rims on ilmenite in metamorphic rocks as a function of fH2O and fO2. Lithos 88:72–84. https://doi.org/10.1016/j.lithos.2005.08.005

    Article  Google Scholar 

  • Harrison TM, Watson EB (1983) Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contrib to Mineral Petrol 84:66–72

    Article  Google Scholar 

  • Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467–1477

    Article  Google Scholar 

  • Hawkins DP, Bowring SA (1999) U-Pb monazite, xenotime and titanite geochronological constraints on the prograde to post-peak metamorphic thermal history of paleoproterozoic migmatites from the grand canyon. Arizona Contrib to Mineral Petrol 134:150

    Article  Google Scholar 

  • Hayden LA, Watson EB (2007) Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth Planet Sci Lett 258:561–568

    Article  Google Scholar 

  • Hayden L, Watson E, Wark D (2008) A thermobarometer for sphene (titanite). Contrib to Mineral Petrol 155:529–540

    Article  Google Scholar 

  • Hirschmann MM, Ghiorso MS, Davis FA et al (2008) Library of experimental phase relations (LEPR): a database and Web portal for experimental magmatic phase equilibria data. Geochem, Geophys Geosystems 9:Q03011. https://doi.org/10.1029/2007GC001894

    Article  Google Scholar 

  • Jakobsson S, Oskarsson N (1994) The system C-O in equilibrium with graphite at high pressure and temperature: an experimental study. Geochim Cosmochim Acta 58:9–17. https://doi.org/10.1016/0016-7037(94)90442-1

    Article  Google Scholar 

  • Jiang P, Yang K-F, Fan H-R et al (2016) Titanite-scale insights into multi-stage magma mixing in early cretaceous of NW Jiaodong terrane, North China Craton. Lithos 258–259:197–214. https://doi.org/10.1016/j.lithos.2016.04.028

    Article  Google Scholar 

  • Johnson MC, Rutherford MJ (1989) Experimentally determined conditions in the Fish canyon Tuff, Colorado, magma chamber. J Petrol 30:711–737

    Article  Google Scholar 

  • Kohn MJ (2017) Titanite petrochronology. Rev Mineral Geochem 83:419–441

    Article  Google Scholar 

  • Maimaiti M, Carroll M, Abudureheman A et al (2019) Experimental study of monazite solubility in haplogranitic melts: a new model for peraluminous and peralkaline melts. Eur J Mineral. https://doi.org/10.1127/ejm/2019/0031-2801

    Article  Google Scholar 

  • Maughan LL, Christiansen EH, Best MG et al (2002) The Oligocene lund Tuff, great basin, USA: a very large volume monotonous intermediate. J Volcanol Geotherm Res 113:129–157. https://doi.org/10.1016/s0377-0273(01)00256-6

    Article  Google Scholar 

  • McLeod GW, Dempster TJ, Faithfull JW (2011) Deciphering magma-mixing processes using zoned titanite from the ross of mull granite, Scotland. J Petrol 52:55–82. https://doi.org/10.1093/petrology/egq071

    Article  Google Scholar 

  • Médard E, McCammon CA, Barr JA, Grove TL (2008) Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. Am Mineral 93:1838–1844. https://doi.org/10.2138/am.2008.2842

    Article  Google Scholar 

  • Montel JM (1993) A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem Geol 110:127–146

    Article  Google Scholar 

  • Moore JG, Sisson TW (2008) Igneous phenocrystic origin of K-Feldspar megacrysts in granitic rocks from the Sierra Nevada Batholith. Geosphere 4:387. https://doi.org/10.1130/ges00146.1

    Article  Google Scholar 

  • Nakada S (1991) Magmatic processes in titanite-bearing dacites, central Andes of Chile and Bolivia. Am Mineral 76:548

    Google Scholar 

  • Olierook HKH, Taylor RJM, Erickson TM et al (2019) Unravelling complex geologic histories using U-Pb and trace element systematics of titanite. Chem Geol 504:105–122. https://doi.org/10.1016/j.chemgeo.2018.11.004

    Article  Google Scholar 

  • Pamukcu AS, Carley TL, Gualda GAR et al (2013) The evolution of the peach spring giant magma body: evidence from accessory mineral textures and compositions, bulk pumice and glass geochemistry, and rhyolite-MELTS modeling. J Petrol 54:1109–1148. https://doi.org/10.1093/petrology/egt007

    Article  Google Scholar 

  • Paterson BA, Stephens WE, Herd DA (1989) Zoning in granitoid accessory minerals as revealed by backscattered electron imagery. Mineral Mag 53:55–61. https://doi.org/10.1180/minmag.1989.053.369.05

    Article  Google Scholar 

  • Peña EA, Slate EH (2006) Global validation of linear model assumptions. J Am Stat Assoc 101:341–354

    Article  Google Scholar 

  • Pichavant M, Montel J-M, Richard LR (1992) Apatite solubility in peraluminous liquids: experimental data and an extension of the Harrison-Watson model. Geochim Cosmochim Acta 56:3855–3861

    Article  Google Scholar 

  • Prowatke S, Klemme S (2005) Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochim Cosmochim Acta 69:695–709

    Article  Google Scholar 

  • Prowatke S, Klemme S (2006) Rare earth element partitioning between titanite and silicate melts: Henry’s law revisited. Geochim Cosmochim Acta 70:4997–5012

    Article  Google Scholar 

  • R Core Team (2019) R: a Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Rapp RP, Ryerson FJ, Miller CF (1987) Experimental evidence bearing on the stability of monazite during crustal anaatexis. Geophys Res Lett 14:307–310. https://doi.org/10.1029/GL014i003p00307

    Article  Google Scholar 

  • Ribbe PH (1980) Titanite. Rev Mineral Geochem 5:137–154

    Google Scholar 

  • Robinson DM, Miller CF (1999) Record of magma chamber processes preserved in accessory mineral assemblages, Aztec Wash pluton, Nevada. Am Mineral 84:1346–1353. https://doi.org/10.2138/am-1999-0911

    Article  Google Scholar 

  • Ryerson FJ, Watson EB (1987) Rutile saturation in magmas: implications for Ti-Nb-Ta depletion in island-arc basalts. Earth Planet Sci Lett 86:225–239

    Article  Google Scholar 

  • Schaltegger U, Brack P, Ovtcharova M et al (2009) Zircon and titanite recording 15 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy). Earth Planet Sci Lett 286:208–218. https://doi.org/10.1016/j.epsl.2009.06.028

    Article  Google Scholar 

  • Tropper P, Manning CE (2008) The current status of titanite-rutile thermobarometry in ultrahigh-pressure metamorphic rocks: the influence of titanite activity models on phase equilibrium calculations. Chem Geol 254:123–132. https://doi.org/10.1016/j.chemgeo.2008.03.010

    Article  Google Scholar 

  • Watson EB (1979) Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. Contrib to Mineral Petrol 70:407–419. https://doi.org/10.1007/bf00371047

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Wones DR (1989) Significance of the assemblage titanite+magnetite+quartz in granitic rocks. Am Mineral 74:744–749

    Google Scholar 

  • Xirouchakis D, Lindsley DH (1998) Equilibria among titanite, hedenbergite, fayalite, quartz, ilmenite, and magnetite; experiments and internally consistent thermodynamic data for titanite. Am Mineral 83:712–725

    Article  Google Scholar 

  • Xirouchakis D, Lindsley DH, Andersen DJ (2001) Assemblages with titanite (CaTiOSiO4), Ca-Mg-Fe olivine and pyroxenes, Fe-Mg-Ti oxides, and quartz: Part I. Theory Am Mineral 86:247–253

    Article  Google Scholar 

  • Xirouchakis D, Lindsley DH, Frost BR (2001) Assemblages with titanite (CaTiOSiO4), Ca-Mg-Fe olivine and pyroxenes, Fe-Mg-Ti oxides, and quartz: part II. Application Am Mineral 86:254–264

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. EAR-0911726 to Miller (Ayers co-PI). Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Thanks to Associate Editor Daniela Rubatto and two anonymous reviewers for helpful comments, and to Aaron Covey and Richard Bradshaw at Vanderbilt University for help with the SEM.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JCA, EBW, FJR. Methodology: JCA, DF, EBW, FJR: Software and Validation: JCA. Formal analysis: JCA and DF. Investigation: JCA, DF, EBW, FJR, BW, and MA. Resources: JCA and EBW. Data curation: JCA. Writing—Original Draft: JCA and DF. Writing—Review and Editing: JCA, CM, EBW, BW. Visualization: JCA. Supervision, Project Administration and Funding acquisition: JCA and CM.

Corresponding author

Correspondence to John C. Ayers.

Additional information

Communicated by Daniela Rubatto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 217 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayers, J.C., Flanagan, D., Miller, C. et al. The solubility of titanite in silicate melt determined from growth and dissolution experiments. Contrib Mineral Petrol 177, 37 (2022). https://doi.org/10.1007/s00410-022-01902-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-022-01902-z

Keywords

Navigation