Skip to main content
Log in

Mathiasite-loveringite and priderite in mantle xenoliths from the Alto Paranaíba Igneous Province, Brazil: genesis and constraints on mantle metasomatism

  • Topical Issue
  • Published:
Central European Journal of Geosciences

Abstract

Alkali-bearing Ti oxides were identified in mantle xenoliths enclosed in kimberlite-like rocks from Limeira 1 alkaline intrusion from the Alto Paranaíba Igneous Province, southeastern Brazil. The metasomatic mineral assemblages include mathiasite-loveringite and priderite associated with clinopyroxene, phlogopite, ilmenite and rutile. Mathiasite-loveringite (55–60 wt.% TiO2; 5.2–6.7 wt.% ZrO2) occurs in peridotite xenoliths rimming chromite (∼50 wt.% Cr2O3) and subordinate ilmenite (12–13.4 wt.% MgO) in double reaction rim coronas. Priderite (Ba/(K+Ba)< 0.05) occurs in phlogopite-rich xenoliths as lamellae within Mg-ilmenite (8.4–9.8 wt.% MgO) or as intergrowths in rutile crystals that may be included in sagenitic phlogopite. Mathiasite-loveringite was formed by reaction of peridotite primary minerals with alkaline melts. The priderite was formed by reaction of peridotite minerals with ultrapotassic melts. Disequilibrium textures and chemical zoning of associated minerals suggest that the metasomatic reactions responsible for the formation of the alkali-bearing Ti oxides took place shortly prior the entrainment of the xenoliths in the host magma, and is not connected to old (Proterozoic) mantle enrichment events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Foley S., Höfer H., Brey G., High-pressure synthesis of priderite and members of the lindsleyite-mathiasite and hawthorneite-yimengite series, Contrib Mineral Petr, 117, 1994, 164–174

    Article  Google Scholar 

  2. Grégoire M., Lorand J. P., O’Reilly S. Y., Cottin J. Y., Armalcolite-bearing, Ti-rich metasomatic assemblages in harzburgitic xenoliths from the Kerguelen Islands: Implications for the oceanic mantle budget of high-field strength elements, Geochim Cosmochim Ac, 64, 2000, 673–694

    Article  Google Scholar 

  3. Konzett J., Yang H., Frost D. J., Phase relations and stability of magnetoplumbite- and crichtoniteseries phases under upper-mantle P-T conditions: an experimental study to 15GPa with implications for LILE metasomatism in the lithospheric mantle, J Petrol, 46, 2005, 749–781

    Article  Google Scholar 

  4. Sobolev N. V., Yefimova E. S., Kaminskiy F. V., Lavrientiev Y. G., Usova L. V., Titanate of complex composition and phlogopite in the diamond stability field. In: Composition and Processes of Deep-seated Zones of Continental Lithosphere, Novosibirsk: Nauka, 1988, 185–186

    Google Scholar 

  5. Leost I., Stachel T., Brey G. P., Harris J. W., Ryabchikov I. D., Diamond formation and source carbonation: mineral associations in diamonds from Namibia, Contrib Mineral Petr, 145, 2003, 15–24

    Article  Google Scholar 

  6. Mitchell R. H., Bergman S. C., Petrology of Lamproites. Plenum Press, New York, 1991

    Book  Google Scholar 

  7. Le Maitre R. W., Igneous rocks: A classification and glossary of terms, 2nd edition, Cambridge University Press, 2002

    Book  Google Scholar 

  8. Haggerty S. E., The mineral chemistry of new titanates from the Jagersfontein kimberlite, South Africa: Implications for metasomatism in the upper mantle, Geochim Cosmochim Ac, 47, 1983, 1833–1854

    Article  Google Scholar 

  9. Haggerty S. E., Smyth J. R., Erlank A. J., Rickard R. S., Danchin R. V., Lindsleyite (Ba) and mathiasite (K): two new chromium-titanates in the crichtonite series from the upper mantle, Am Mineral, 68, 1983, 494–505

    Google Scholar 

  10. Lu Q., Zhou H. A., New progress in research on mathiasite in Mengying, Shandong-III. Oxide minerals containing the large ions Cr, Ti and Fe in the upper mantle, Acta Mineralogica Sinica, 14, 1994, 343–347

    Google Scholar 

  11. Mitchell R. H., Lewis R. D., Priderite-bearing xenoliths from the Prairie Creek mica peridotite, Arkansas, Can Mineral, 21(1), 1983, 59–64

    Google Scholar 

  12. Velde D., Mineralogy of mafic xenoliths and their reaction zones in the olivine lamproite from Prairie Creek Arkansas and the paragenesis of haggertyite, Ba[Fe6Ti5Mg]O19, Am Mineral, 85, 2000, 420–429

    Google Scholar 

  13. Gibson S. A., Thompson R.N., Leonardos O. H., Dickin A. P., Mitchell J. G., The Late Cretaceous impact of the Trindade mantle plume: Evidence from large-volume, mafic, potassic magmatism in SE Brazil, J Petrol, 36(1), 1995, 189–229

    Article  Google Scholar 

  14. Araujo A. L. N., Carlson R. W., Gaspar J. C., Bizzi L. A., Petrology of kamafugites and kimberlites from the Alto Paranaíba Alkaline Province, Minas Gerais, Brazil, Contrib Mineral Petr, 142(2), 2001, 163–177

    Article  Google Scholar 

  15. Carlson R. W., AraÞjo A. L. N., Junqueira-Brod T. C., Gaspar J. C., Brod J. A., Petrinovic I. A., Hollanda M. H. B. M., Pimentel M. M., Sichel S., Chemical and isotopic relationships between peridotites xenoliths and mafic-ultrapotassic rocks from Southern Brazil, Chem Geol, 242, 2007, 415–434

    Article  Google Scholar 

  16. Guarino V., Wu F.-Y., Lustrino M., Melluso L., Brotzu P., Gomes C.B., Ruberti E., Tassinari C.C.G., Svisero D.P., U-Pb ages, Sr-Nd isotope geochemistry, and petrogenesis of kimberlites, kamafugites and phlogopite-picrites of the Alto Paranaíba Igneous Province, Brazil, Chem Geol, 353, 2013, 65–82

    Article  Google Scholar 

  17. Pereira R. S., Fuck R., Archean nucleii and the distribution of kimberlite and related rocks in the São Francisco Craton, Brazil, Revista Brasileira de Geociências, 35(3), 2005, 93–104

    Google Scholar 

  18. Pinto L. G. R., Interpretação de dados gravimétricos e eletromagnéticos do sul do cráton São Francisco: novos modelos crustais e litosféricos. PhD thesis, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, 2009 (in portuguese)

    Google Scholar 

  19. VanDecar J. C., James D. E., Assumpção M., Seismic evidence for a fossil mantle plume beneath South America and implications for plate driving forces, Nature, 378(6552), 1995, 25–31

    Article  Google Scholar 

  20. Rocha M. P., Schimmel M., Assumpção M., Uppermantle seismic structure beneath SE and Central Brazil from P- and S-wave regional traveltime tomography, Geophys J Int, 184(1), 2011, 268–286

    Article  Google Scholar 

  21. Meyer H. O. A., Svisero D. P., Mantle xenoliths in South America. In: Nixon P.H. Mantle Xenoliths, John Wiley & Sons, New York, 1987, 844

    Google Scholar 

  22. Meyer H. O. A., Svisero D. P., Limeira and Indaiá intrusions, Minas Gerais. In: Field Guide Book, 5th International Kimberlite Conference, Araxá (Minas Gerais, Brazil), CPRM Special Publication, 1991, 49–55

    Google Scholar 

  23. Meyer H. O. A., Garwood B. L., Svisero D. P., Smith C. B., Alkaline Ultrabasic Intrusions of Western Minas Gerais, Brazil. In: Meyer H. O. A., Leonardos O. H., Proceedings of the 5th International Kimberlite Conference, CPRM/DNPM Special Publication, 1, 1994, 140–155

    Google Scholar 

  24. Mercier J. C. C., Nicolas A., Textures and fabrics of upper mantle peridotites as illustrated by xenoliths from basalts, J Petrol, 16, 1975, 454–487

    Article  Google Scholar 

  25. Bastin G. F., Van Loo F. J. J., Heijiligers H. J. M., Evaluation and use of gaussian (ϕ(pz)) curves in quantitative electron probe microanalysis: a new optimization, X-ray Spectrom, 13, 1984, 91–97

    Article  Google Scholar 

  26. Haggerty S. E., The chemistry and genesis of opaque minerals in kimberlites, Phys Chem Earth, 9, 1975, 295–307

    Article  Google Scholar 

  27. Jianxiong Z., Guiojie Y., Jianhong Z., Mathiasite in a kimberlite from China, Acta Mineralogica Sinica, 9, 1984, 193–200

    Google Scholar 

  28. Campbell I. H., Kelly P. R., The geochemistry of loveringite, a uranium-rare-earth-bearing accessory phase from the Jimberlana Intrusion of Western Australia, Mineral Mag, 42(322), 1978, 187–193

    Article  Google Scholar 

  29. Qi L., Huyun Z., A new progress in research on mathiasite in Mengying, Snadong, III. Oxide minerals containing the large ions Cr, Ti and Fe in the upper mantle, Acta Mineralogica Sinica 4, 1994, 4

    Google Scholar 

  30. Witt-Eickshen G. E., Seck H. A. Solubility of Ca and Al in orthopyroxene from spinel peridotite: an improved version of an empirical geothermometer, Contrib Mineral Petr, 106, 1991, 431–439

    Article  Google Scholar 

  31. Dawson J. B., Smith J. V., The MARID (mica-amphibole-rutile-ilmenite-diopside) suite of xenoliths in kimberlite, Geochim Cosmochim Ac, 41, 1977, 309–323

    Article  Google Scholar 

  32. Costa V. S., Figueiredo B. R., Weska R. K., Estudos mineralógicos e químicos do kimberlito Batovi 6, MT, em comparação com as intrusões Três Ranchos 4, GO e Limeira 1, MG, Geochimica Brasiliensis, 11(1), 1997, 53–71 (in portuguese)

    Google Scholar 

  33. Haggerty S. E., Upper mantle mineralogy, J Geodyn, 20, 1995, 331–364

    Article  Google Scholar 

  34. Barkov A. Y., Fleet M. E., Martin R. F., Men’Shikov Y. P., Sr-Na-REE titanates of the crichtonite group from a fenitized megaxenolith, Khibina alkaline complex, Kola Peninsula, Russia: first occurrence and implications, Eur J Mineral, 18(4), 2006, 493–502

    Article  Google Scholar 

  35. Gatehouse B. M., Grey I. E., Smyth J. R., Structure refinement of mathiasite, (K0.62Na0.14Ba0.14Sr0.10) [Sigma]1.0[Ti12.90Cr3.10Mg1.53Fe2.15Zr0.67Ca0.29 (V,Nb,Al)0.36] [Sigma]21.0O38, Acta Crystallogr C, 39(4), 1983, 421–422

    Article  Google Scholar 

  36. Biagioni C., Capalbo C., Pasero M., Nomenclature tunings in the hollandite supergroup, Eur J Mineral, 25(1), 2013, 85–90

    Article  Google Scholar 

  37. Norrish K., Priderite, a new mineral from the leucitelamproites of the west Kimberley area, Western Australia, Mineral Mag, 29, 1951, 496–501

    Article  Google Scholar 

  38. Gaspar J. C., Conceicao e Silva A. J. G., de Araujo D. P., Composition of priderite in phlogopites from the Catalao I carbonatite complex, Brazil, Mineral Mag, 58(3), 1994, 409–415

    Article  Google Scholar 

  39. Middlemost E. A. K., Paul D. K., Fletcher I. R., Geochemistry and mineralogy of the minettelamproite association from the Indian Gondwanas, Lithos, 22(1), 1988, 31–42

    Article  Google Scholar 

  40. Mitchell R. H., Meyer H. O. A., Niobian K-Ba-V titanates from micaceous kimberlite, Star mine, Orange Free State, South Africa, Mineral Mag, 53, 1989, 451–456

    Google Scholar 

  41. Mitchell R. H., Kimberlites, orangeites and related rocks. Plenum Press, New York, 1995, 410

    Book  Google Scholar 

  42. Rao N. V. C., Sinha A. K., Kumar S., Srivastava R., K., K-rich titanate from the Jharia ultrapotassic rock, Gondwana Coal Fields, Eastern India, and its petrological significance, Journal Geological Society of India, 81, 2013, 733–736

    Article  Google Scholar 

  43. Xiao Y., Zhang H. -F., Fan W. -M., Ying J. -F., Zhang J., Zhao X. -M., Su B. -X., Evolution of lithospheric mantle beneath the Tan-Lu fault zone, eastern North China Craton: Evidence from petrology and geochemistry of peridotite xenoliths, Lithos, 117, 2010, 229–246

    Article  Google Scholar 

  44. Matson D. W., Muenow D. W., Garcia M. O., Volatile contents of phlogopite micas from South African kimberlite, Contrib Mineral Petr, 93, 1986, 399–408

    Article  Google Scholar 

  45. Simon N. S. C., Irvine G. J., Davies G. R., Pearson D. G., Carlson R. W., The origin of garnet and clinopyroxene in “depleted” Kaapvaal peridotites, Lithos, 71, 2003, 289–322

    Article  Google Scholar 

  46. Bianchini G., Beccaluva L., Bonadiman C., Nowell G., Pearson G., Siena F., Wilson M., Evidence of diverse depletion and metasomatic events in harzburgitelherzolite mantle xenoliths from the Iberian plate (Olot, NE Spain): Implications for lithosphere accretionary processes, Lithos, 94, 2007, 25–45

    Article  Google Scholar 

  47. Dawson J. B., Metasomatism and partial melting in upper-mantle peridotite xenoliths from the Lashaine Volcano, Northern Tanzania, J Petrol, 43, 2002, 1749–1777

    Google Scholar 

  48. Alkmim F. F., Brito-Neves B. B., Castro Alves J. A., Tectonic framework of the São Francisco Craton. In: Domingues J. M. L., Misi A. The São Francisco Craton, Sociedade Brasileira de Geologia, Salvador, 1993, 45–62 (in portuguese)

    Google Scholar 

  49. Smith J. V., Breenessholtz R., Dawson J. B., Chemistry of micas from kimberlites and xenoliths 1. Micaceous kimberlites, Geochim Cosmochim Ac, 42, 1978, 959–971

    Article  Google Scholar 

  50. Jaques A. L., Lewis J. D., Smith C. B., The kimberlites and lamproites of western Australia, Geological Survey of Western Australia, Bulletin, 132, 1986, 268

    Google Scholar 

  51. Scott-Smith B. H., Skinner E. M. W., Loney P. E., The Kapamba lamproites of the Luangwa Valley, Eastern Zambia. In: Ross J., Proceedings of the 4th International Kimberlite Conference, Geological Society of Australia Special Publication, Perth, 1, 1989, 189–205

    Google Scholar 

  52. Melluso L., Lustrino M., Ruberti E., Brotzu P., Gomes C. B., Morbidelli L., Morra V., Svisero D., D’Amelio F., Major- and trace-element composition of olivine, perovskite, clinopyroxene, Cr-Fe-Ti oxides, phlogopite and host kamafugites and kimberlites, Alto Paranaíba, Brazil, Can Mineral, 46, 2008, 19–40

    Article  Google Scholar 

  53. McDonough W. F., Sun S. -s., Composition of the Earth, Chem Geol, 120, 1995, 223–253

    Article  Google Scholar 

  54. Sun S.-s., McDonough W. F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in the Ocean Basins, Geol Soc Spec Publ, 42, 1989, 313–345

    Article  Google Scholar 

  55. Jones A. P., Smith J. V., Dawson J. B., Mantle metasomatism in 14 veined peridotites from the Bultfontein Mine, South Africa, J Geol, 90, 1982, 435–453

    Google Scholar 

  56. Carmichael I. S. E., The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates, Contrib Mineral Petr, 14, 1967, 36–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidyã V. Almeida.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, V.V., Janasi, V.d.A., Svisero, D.P. et al. Mathiasite-loveringite and priderite in mantle xenoliths from the Alto Paranaíba Igneous Province, Brazil: genesis and constraints on mantle metasomatism. cent.eur.j.geo. 6, 614–632 (2014). https://doi.org/10.2478/s13533-012-0197-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13533-012-0197-5

Keywords

Navigation