Skip to main content
Log in

Re–Os isotope evidence from Mesozoic and Cenozoic basalts for secular evolution of the mantle beneath the North China Craton

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The mechanism and process of lithospheric thinning beneath the North China Craton (NCC) are still debated. A key criterion in distinguishing among the proposed mechanisms is whether associated continental basalts were derived from the thinning lithospheric mantle or upwelling asthenosphere. Herein, we investigate the possible mechanisms of lithospheric thinning based on a systematic Re–Os isotopic study of Mesozoic to Cenozoic basalts from the NCC. Our whole-rock Re–Os isotopic results indicate that the Mesozoic basalts generally have high Re and Os concentrations that vary widely from 97.2 to 839.4 ppt and 74.4 to 519.6 ppt, respectively. They have high initial 187Os/188Os ratios ranging from 0.1513 to 0.3805, with corresponding variable γOs(t) values (+20 to +202). In contrast, the Re–Os concentrations and radiogenic Os isotope compositions of the Cenozoic basalts are typically lower than those of the Mesozoic basalts. The lowest initial 187Os/188Os ratios of the Cenozoic basalts are 0.1465 and 0.1479, with corresponding γOs(t) values of +15 and +16, which are within the range of ocean island basalts. These new Re–Os isotopic results, combined with the findings of previous studies, indicate that the Mesozoic basalts were a hybrid product of the melting of pyroxenite and peridotite in ancient lithospheric mantle beneath the NCC. The Cenozoic basalts were derived mainly from upwelling asthenosphere mixed with small amounts of lithospheric materials. The marked differences in geochemistry between the Mesozoic and Cenozoic basalts suggest a greatly reduced involvement of lithospheric mantle as the magma source from the Mesozoic to the Cenozoic. The subsequent lithospheric thinning of the NCC and replacement by upwelling asthenospheric mantle resulted in a change to asthenosphere-derived Cenozoic basalts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified from Gao et al. 2008 and Liu et al. 2008)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aulbach S, Creaser RA, Pearson NJ, Simonetti SS, Heaman LM, Griffin WL, Stachel T (2009) Sulfide and whole rock Re–Os systematics of eclogite and pyroxenite xenoliths from the Slave Craton, Canada. Earth Planet Sci Lett 283(1):48–58

    Article  Google Scholar 

  • Aulbach S, Mungall JE, Pearson DG (2016) Distribution and processing of highly siderophile elements in cratonic mantle lithosphere. Rev Mineral Geochem 81(1):239–304

    Article  Google Scholar 

  • Brenan JM, Bennett NR, Zajacz Z (2016) Experimental results on fractionation of the highly siderophile elements (HSE) at variable pressures and temperatures during planetary and magmatic differentiation. Rev Miner Geochem 81(1):1–87

    Article  Google Scholar 

  • Burton KW, Capmas F, Birck JL, Allegre CJ, Cohen AS (2000) Resolving crystallisation ages of Archean mafic-ultramafic rocks using the Re–Os isotope system. Earth Planet Sci Lett 179(3–4):453–467

    Article  Google Scholar 

  • Carlson RW, Irving AJ (1994) Depletion and enrichment history of subcontinental lithospheric mantle: An Os, Sr, Nd and Pb isotopic study of ultramafic xenoliths from the northwestern Wyoming Craton. Earth Planet Sci Lett 126(4):457–472

    Article  Google Scholar 

  • Chen B, Suzuki K, Tian W, Jahn BM, Ireland T (2009) Geochemistry and Os–Nd–Sr isotopes of the Gaositai Alaskan-type ultramafic complex from the northern North China craton: implications for mantle-crust interaction. Contrib Miner Petrol 158(5):683–702

    Article  Google Scholar 

  • Cohen AS, Waters FG (1996) Separation of osmium from geological materials by solvent extraction for analysis by thermal ionisation mass spectrometry. Anal Chim Acta 332(2–3):269–275

    Article  Google Scholar 

  • Creaser RA, Papanastassiou DA, Wasserburg GJ (1991) Negative thermal ion mass spectrometry of osmium, rhenium and iridium. Geochim Cosmochim Acta 55(1):397–401

    Article  Google Scholar 

  • D’orazio M, Agostini S, Innocenti F, Haller MJ, Manetti P, Mazzarini F (2001) Slab window-related magmatism from southernmost South America: the Late Miocene mafic volcanics from the Estancia Glencross Area (~52 S, Argentina–Chile). Lithos 57(2):67–89

    Article  Google Scholar 

  • Dai LQ, Zheng YF, Zhao ZF (2016) Termination time of peak decratonization in North China: geochemical evidence from mafic igneous rocks. Lithos 240:327–336

    Article  Google Scholar 

  • Ellam RM, Carlson RW, Shirey SB (1992) Evidence from Re–Os isotopes for plume-lithosphere mixing in Karoo flood basalt genesis. Nature 359(6397):718–721

    Article  Google Scholar 

  • Esser BK, Turekian KK (1993) The osmium isotopic composition of the continental crust. Geochim Cosmochim Acta 57(13):3093–3104

    Article  Google Scholar 

  • Furman T, Graham D (1999) Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos 48(1):237–262

    Article  Google Scholar 

  • Gannoun A, Burton KW, Parkinson IJ, Alard O, Schiano P, Thomas LE (2007) The scale and origin of the osmium isotope variations in mid-ocean ridge basalts. Earth Planet Sci Lett 259(3):541–556

    Article  Google Scholar 

  • Gao S, Rudnick RL, Carlson RW, McDonough WF, Liu YS (2002) Re–Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet Sci Lett 198(3–4):307–322

    Article  Google Scholar 

  • Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC, Wang QH (2004) Recycling lower continental crust in the North China Craton. Nature 432(7019):892–897

    Article  Google Scholar 

  • Gao S, Rudnick RL, Xu WL, Yuan HL, Liu YS, Walker RJ, Puchtel IS, Liu XM, Huang H, Wang XR, Yang J (2008) Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet Sci Lett 270(1–2):41–53

    Article  Google Scholar 

  • Green DH, Schmidt MW, Hibberson WO (2004) Island-arc ankaramites: primitive melts from fluxed refractory lherzolitic mantle. J Petrol 45:391–403

    Article  Google Scholar 

  • Hauri EH, Hart SR (1993) Re–Os isotope systematics of HIMU and EMII oceanic island basalts from the south Pacific Ocean. Earth Planet Sci Lett 114(2–3):353–371

    Article  Google Scholar 

  • Herzberg C (2011) Identification of source lithology in the Hawaiian and Canary Islands: implications for origins. J Petrol 52(1):113–146

    Article  Google Scholar 

  • Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett 79(1–2):33–45

    Article  Google Scholar 

  • Huang XL, Zhong JW, Xu YG (2012) Two tales of the continental lithospheric mantle prior to the destruction of the North China Craton: Insights from Early Cretaceous mafic intrusions in western Shandong, East China. Geochim Cosmochim Acta 96:193–214

    Article  Google Scholar 

  • Huang F, Chen J-L, Xu J-F, Wang B-D, Li J (2015) Os–Nd–Sr isotopes in Miocene ultrapotassic rocks of southern Tibet: partial melting of a pyroxenite-bearing lithospheric mantle? Geochim Cosmochim Acta 163(0):279–298

    Article  Google Scholar 

  • Langmuir CH, Vocke RD, Hanson GN, Hart SR (1978) A general mixing equation with applications to Icelandic basalts. Earth Planet Sci Lett 37(3):380–392

    Article  Google Scholar 

  • Li J, Jiang XY, Xu JF, Zhong LF, Wang XC, Wang GQ, Zhao PP (2014) Determination of platinum-group elements and Re–Os isotopes using ID-ICP-MS and N-TIMS from a single digestion after two-stage column separation. Geostand Geoanal Res 38(1):37–50

    Article  Google Scholar 

  • Li XW, Li J, Bader TM, Mo XX, Scheltens M, Chen ZY, Xu JF, Yu XH, Huang XF (2015) Evidence for crustal contamination in intra-continental OIB-like basalts from West Qinling, central China: a Re–Os perspective. J Asian Earth Sci 98:436–445

    Article  Google Scholar 

  • Lightfoot PC, Naldrett AJ, Gorbachev NS, Fedorenko VA, Hawkesworth CJ, Doherty W (1994) Chemostratigraphy of Siberian Trap lavas Noril’sk destrict Russia: implications and source of flood basalt magmas and their associated Ni–Cu mineralization. In: Lightfoot, P.C., Naldrett, A.J. (Eds.), Proc of the Sudbury- Noril’sk symposium, Geological Survey Special Publication, Ontario, 5, pp 283–312

    Google Scholar 

  • Liu RX, Chen WJ, Sun JZ, Li DM (1992) The K–Ar age and tectonic environment of Cenozoic volcanic rock in China. In: X. LR (ed) The age and geochemistry of Cenozoic volcanic rock in China, Seismic Press, Beijing, pp 1–43

    Google Scholar 

  • Liu YS, Gao S, Kelemen PB, Xu WL (2008) Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochim Cosmochim Acta 72(9):2349–2376

    Article  Google Scholar 

  • Liu JG, Rudnick RL, Walker RJ, Gao S, Wu FY, Piccoli PM, Yuan HL, Xu WL, Xu YG (2011) Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: an example from the North China Craton. Geochim Cosmochim Acta 75(13):3881–3902

    Article  Google Scholar 

  • Lu F, Zhao L, Deng J, Zheng J (1995) The discussion on the ages of kimberlitic magma activity in North China Platform. Acta Petrol Sin 11(4):365–374

    Google Scholar 

  • Ma L, Jiang SY, Hofmann AW, Dai BZ, Hou ML, Zhao KD, Chen LH, Li JW, Jiang YH (2014) Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: a consequence of rapid lithospheric thinning beneath the North China Craton? Geochim Cosmochim Acta 124:250–271

    Article  Google Scholar 

  • Mallmann G, O’Neill HSC (2007) The effect of oxygen fugacity on the partitioning of Re between crystals and silicate melt during mantle melting. Geochim Cosmochim Acta 71(11):2837–2857

    Article  Google Scholar 

  • Mckenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29(3):625–679

    Article  Google Scholar 

  • McKenzie D, O’nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32(5):1021–1091

    Article  Google Scholar 

  • Meisel T, Walker RJ, Irving AJ, Lorand J-P (2001) Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochim Cosmochim Acta 65(8):1311–1323

    Article  Google Scholar 

  • Meng F, Gao S, Niu Y, Liu Y, Wang X (2015) Mesozoic–Cenozoic mantle evolution beneath the North China Craton: a new perspective from Hf–Nd isotopes of basalts. Gondwana Res 27(4):1574–1585

    Article  Google Scholar 

  • Menzies MA, Fan W, Zhang M (1993) Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. Geological Society, Special Publications, London, 76(1):71–81

    Google Scholar 

  • Naldrett AJ (2004) Magmatic sulfide deposits: geology, geochemistry and exploration. Springer, Heidelberg, pp. 334–335

    Book  Google Scholar 

  • Nier AO (1950) A redetermination of the relative abundances of the Isotopes of neon, krypton, rubidium, xenon, and mercury. Phys Rev 79(3):450–454

    Article  Google Scholar 

  • Patten C, Barnes SJ, Mathez EA, Jenner FE (2013) Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets. Chem Geol 358:170–188

    Article  Google Scholar 

  • Pearson DG, Nowell GM (2004) Re–Os and Lu–Hf isotope constraints on the origin and age of pyroxenites from the beni bousera peridotite massif: implications for mixed peridotite–pyroxenite mantle sources. J Petrol 45(2):439–455

    Article  Google Scholar 

  • Pei FP, Xu WL, Wang QH, Wang DY, Lin JQ (2004) Mesozoic basalt and mineral chemistry of the mantle-derived xenocrysts in Feixian, western Shandong, China: constraints on nature of Mesozoic lithospheric mantle. Geol J China Univ 10(1):88–97

    Google Scholar 

  • Pilet S, Baker MB, Stolper EM (2008) Metasomatized lithosphere and the origin of alkaline lavas. Science 320(5878):916–919

    Article  Google Scholar 

  • Reisberg L, Zindler A, Marcantonio F, White W, Wyman D, Weaver B (1993) Os isotope systematics in ocean island basalts. Earth Planet Sci Lett 120(3–4):149–167

    Article  Google Scholar 

  • Righter K, Downs RT (2001) The crystal structures of synthetic Re- and PGE-bearing magnesioferrite Spinels: implications for impacts, accretion and the mantle. Geophys Res Lett 28(4):619–622

    Article  Google Scholar 

  • Righter K, Hauri EH (1998) Compatibility of rhenium in garnet during mantle melting and magma genesis. Science 280(5370):1737–1741

    Article  Google Scholar 

  • Righter K, Campbell AJ, Humayun M, Hervig RL (2004) Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts. Geochim Cosmochim Acta 68(4):867–880

    Article  Google Scholar 

  • Rosenthal A, Foley SF, Pearson DG, Nowell GM, Tappe S (2009) Petrogenesis of strongly alkaline primitive volcanic rocks at the propagating tip of the western branch of the East African Rift. Earth Planet Sci Lett 284(1):236–248

    Article  Google Scholar 

  • Roy-Barman M, Luck J-M, Allègre CJ (1996) Os isotopes in orogenic lherzolite massifs and mantle heterogeneities. Chem Geol 130(1–2):55–64

    Article  Google Scholar 

  • Roy-Barman M, Wasserburg GJ, Papanastassiou DA, Chaussidon M (1998) Osmium isotopic compositions and Re–Os concentrations in sulfide globules from basaltic glasses. Earth Planet Sci Lett 154(1):331–347

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL, Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3, Elsevier, Amsterdam, pp 1–64

    Chapter  Google Scholar 

  • Shirey SB, Walker RJ (1998) The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Annu Rev Earth Planet Sci 26(1):423–500

    Article  Google Scholar 

  • Smit KV, Stachel T, Creaser RA, Ickert RB, DuFrane SA, Stern RA, Seller M (2014) Origin of eclogite and pyroxenite xenoliths from the Victor kimberlite, Canada, and implications for Superior craton formation. Geochim Cosmochim Acta 125:308–337

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434(7033):590–597

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung SL, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316(5823):412–417

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, Special Publications, London, 42(1):313–345

    Google Scholar 

  • Sun W, Bennett VC, Eggins SM, Kamenetsky VS, Arculus RJ (2003) Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas. Nature 422(6929):294–297

    Article  Google Scholar 

  • Tang YJ, Zhang HF, Santosh M, Ying JF (2013) Differential destruction of the North China Craton: a tectonic perspective. J Asian Earth Sci 78:71–82

    Article  Google Scholar 

  • Watson EB, Othman DB, Luck J-M, Hofmann AW (1987) Partitioning of U, Pb, Cs, Yb, Hf, Re and Os between chromian diopsidic pyroxene and haplobasaltic liquid. Chem Geol 62(3):191–208

    Article  Google Scholar 

  • Widom E, Shirey SB (1996) Os isotope systematics in the Azores: Implications for mantle plume sources. Earth Planet Sci Lett 142(3–4):451–465

    Article  Google Scholar 

  • Widom E, Hoernle KA, Shirey SB, Schmincke H-U (1999) Os isotope systematics in the Canary Islands and Madeira: lithospheric contamination and mantle plume signatures. J Petrol 40(2):279–296

    Article  Google Scholar 

  • Windley BF, Maruyama S, Xiao WJ (2010) Delamination/thinning of sub-continental lithospheric mantle under Eastern China: the role of water and multiple subduction. Am J Sci 310(10):1250–1293

    Article  Google Scholar 

  • Wood BJ, Bryndzia LT, Johnson KE (1990) Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248(4953):337–345

    Article  Google Scholar 

  • Wu FY, Walker RJ, Ren XW, Sun DY, Zhou XH (2003) Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chem Geol 196(1–4):107–129

    Article  Google Scholar 

  • Wu FY, Lin JQ, Wilde SA, Zhang XO, Yang JH (2005a) Nature and significance of the early cretaceous giant igneous event in eastern China. Earth Planet Sci Lett 233(1–2):103–119

    Article  Google Scholar 

  • Wu F, Zhao G, Wilde SA, Sun D (2005b) Nd isotopic constraints on crustal formation in the North China Craton. J Asian Earth Sci 24(5):523–545

    Article  Google Scholar 

  • Wu FY, Walker RJ, Yang YH, Yuan HL, Yang JH (2006) The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochim Cosmochim Acta 70(19):5013–5034

    Article  Google Scholar 

  • Wyllie PJ, Sekine T (1982) The formation of mantle phlogopite in subduction zone hybridization. Contrib Mineral Petrol 79(4):375–380

    Article  Google Scholar 

  • Xia QK, Liu J, Liu SC, Kovacs I, Feng M, Dang L (2013) High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere. Earth Planet Sci Lett 361:85–97

    Article  Google Scholar 

  • Xu YG (2001) Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China: evidence, timing and mechanism. Phys Chem Earth Pt A 26(9–10):747–757

    Article  Google Scholar 

  • Xu YG, Huang XL, Ma JL, Wang YB, Iizuka Y, Xu JF, Wang Q, Wu XY (2004) Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton: constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contrib Mineral Petrol 147(6):750–767

    Article  Google Scholar 

  • Xu YG, Ma JL, Frey FA, Feigenson MD, Liu JF (2005) Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chem Geol 224(4):247–271

    Article  Google Scholar 

  • Xu JF, Suzuki K, Xu YG, Mei HJ, Li J (2007) Os, Pb, and Nd isotope geochemistry of the Permian Emeishan continental flood basalts: Insights into the source of a large igneous province. Geochim Cosmochim Acta 71(8):2104–2119

    Article  Google Scholar 

  • Xu WL, Hergt JA, Gao S, Pei FP, Wang W, Yang DB (2008) Interaction of adakitic melt-peridotite: implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth Planet Sci Lett 265(1–2):123–137

    Article  Google Scholar 

  • Xu R, Liu YS, Tong XR, Hu ZC, Zong KQ, Gao S (2013) In-situ trace elements and Li and Sr isotopes in peridotite xenoliths from Kuandian, North China Craton: insights into Pacific slab subduction-related mantle modification. Chem Geol 354:107–123

    Article  Google Scholar 

  • Yang AY, Zhao TP, Qi L, Yang SH, Zhou MF (2011) Chalcophile elemental constraints on sulfide-saturated fractionation of Cenozoic basalts and andesites in SE China. Lithos 127(1):323–335

    Article  Google Scholar 

  • Zeng G, Chen LH, Hofmann AW, Jiang SY, Xu XS (2011) Crust recycling in the sources of two parallel volcanic chains in Shandong, North China. Earth Planet Sci Lett 302(3–4):359–368

    Article  Google Scholar 

  • Zhang HF (2005) Transformation of lithospheric mantle through peridotite-melt reaction: a case of Sino-Korean craton. Earth Planet Sci Lett 237(3–4):768–780

    Article  Google Scholar 

  • Zhang HF, Sun M, Zhou XH, Fan WM, Zhai MG, Yin JF (2002) Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr–Nd–Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol 144(2):241–253

    Article  Google Scholar 

  • Zhang HF, Nakamura E, Sun M, Kobayashi K, Zhang J, Ying JF, Tang YJ, Niu LF (2007) Transformation of subcontinental lithospheric mantle through peridotite-melt reaction: evidence from a highly fertile mantle xenolith from the north China Craton. Int Geol Rev 49(7):658–679

    Article  Google Scholar 

  • Zhang HF, Goldstein SL, Zhou XH, Sun M, Zheng JP, Cai Y (2008) Evolution of subcontinental lithospheric mantle beneath eastern China: Re–Os isotopic evidence from mantle xenoliths in Paleozoic Kimberlites and Mesozoic basalts. Contrib Mineral Petrol 155(3):271–293

    Article  Google Scholar 

  • Zhao GC, Cawood PA, Wilde SA, Min S, Lu LZ (2000) Metamorphism of basement rocks in the Central Zone of the North China Craton: implications for Paleoproterozoic tectonic evolution. Precambrian Res 103(1–2):55–88

    Article  Google Scholar 

  • Zhao G, Wilde SA, Cawood PA, Sun M (2001) Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution. Precambrian Res 107(1–2):45–73

    Article  Google Scholar 

  • Zhao GC, Sun M, Wilde SA, Li SZ (2005) Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Res 136(2):177–202

    Article  Google Scholar 

  • Zheng JP, O’Reilly SY, Griffin WL, Lu FX, Zhang M, Pearson NJ (2001) Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution. Lithos 57(1):43–66

    Article  Google Scholar 

  • Zheng JP, Sun M, Zhou MF, Robinson P (2005) Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithospheric evolution of the North China Craton. Geochim Cosmochim Acta 69(13):3401–3418

    Article  Google Scholar 

  • Zheng JP, Griffin WL, O’Reilly SY, Yang JS, Li TF, Zhang M, Zhang RY, Liou JG (2006) Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: constraints on mantle evolution beneath eastern China. J Petrol 47(11):2233–2256

    Article  Google Scholar 

  • Zhou Z, Barrett PM, Hilton J (2003) An exceptionally preserved Lower Cretaceous ecosystem. Nature 421(6925):807–814

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Sonja Aulbach and an anonymous reviewer for their constructive and thoughtful reviews which greatly improved the manuscript. Dr. Fazil Rafiq and Jochen Hoefs are thanked for their helpful comments and editorial handing. We thank Jian-Bin Wu for his help in Re–Os isotopic analyses. This research was supported by National Key Research and Development Project of China (project 2016YFC0600304 and 2016YFC0600305), the Natural Science Foundation of China (41673008, 41421062, 41603033, 41373030 and 41573024), the Major State Basic Research Program of the People’s Republic of China (2015CB452602), and the Strategic Priority Research Program (B) of Chinese Academy of Sciences (XDB03010300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Feng Xu.

Additional information

Communicated by Jochen Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 76 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Xu, JF., Liu, YS. et al. Re–Os isotope evidence from Mesozoic and Cenozoic basalts for secular evolution of the mantle beneath the North China Craton. Contrib Mineral Petrol 172, 28 (2017). https://doi.org/10.1007/s00410-017-1342-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-017-1342-4

Keywords

Navigation