Skip to main content

Advertisement

Log in

Geology and genesis of the Toongi rare metal (Zr, Hf, Nb, Ta, Y and REE) deposit, NSW, Australia, and implications for rare metal mineralization in peralkaline igneous rocks

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Toongi Deposit, located in central NSW, Australia, hosts significant resources of Zr, Hf, Nb, Ta, Y and REE within a small (ca. 0.3 km2), rapidly cooled trachyte laccolith. Toongi is part of regional Late Triassic to Jurassic alkaline magmatic field, but is distinguished from the other igneous bodies by its peralkaline composition and economically significant rare metal content that is homogenously distributed throughout the trachyte body. The primary ore minerals are evenly dispersed throughout the rock and include lueshite/natroniobite and complex Na–Fe–Zr–Nb–Y–REE silicate minerals dominated by a eudialyte group mineral (EGM). The EGM occurs in a unique textural setting in the rock, commonly forming spheroidal or irregular-shaped globules, herein called “snowballs”, within the rock matrix. The snowballs are often protruded by aegirine and feldspar phenocrysts and contain swarms of fine aegirine and feldspar grains that often form spiral or swirling patterns within the snowball. Secondary ore minerals include REE carbonates, Y milarite, catapleiite and gaidonnayite that fill fractures and vesicles in the rock. Based on bulk-rock geochemical and Nd isotope data, and thermodynamic modelling of magma fractionation, the alkaline rocks of the region are interpreted to represent extrusive to hyperbyssal products of mantle-derived magma that ponded at mid-crustal levels (ca. 0.3 GPa) and underwent extensive fractionation under low-oxygen fugacity conditions. The high Na2O, peralkaline nature of the Toongi Deposit trachyte developed via extensive fractionation of an alkali olivine basalt parental magma initially in the mid-crust and subsequently at shallow levels (ca. 0.1 GPa). This extended fractionation under low fO2 and relatively low H2O-activity conditions limited volatile release and allowed build-up of rare metal contents to ore grades. We speculate that the ore minerals may have originally formed from rare metal-rich sodic-silicate melt that formed immiscible globules (subsequently crystallized to EGM) in the magma shortly before emplacement and rapid cooling. Subsequent hydrothermal alteration caused relatively limited and localized remobilization of some ore metals into fractures and vesicles in the rock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alkane Resources Limited (2015) Annual report. http://www.alkane.com.au/index.php/reports/annual-reports

  • Aseri AA, Linnen RL, Che XD, Thibault Y, Holtz F (2015) Effects of fluorine on the solubilities of Nb, Ta, Zr and Hf minerals in highly fluxed water-saturated haplogranitic melts. Ore Geol Rev 64:736–746

    Article  Google Scholar 

  • Aubert D, Stille P, Probst A, Gauthier-Lafaye F, Pourcelot L (2002) Characterization and migration of atmospheric REE in soils and surface waters. Geochim Cosmochim Acta 66:3339–3350

    Article  Google Scholar 

  • Baker BH, Goles GG, Leeman WP, Lindstrom MM (1977) Geochemistry and petrogenesis of a basalt-benmoreite-trachyte suite from the southern part of the Gregory Rift, Kenya. Contrib Mineral Petrol 64:303–332

    Article  Google Scholar 

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Mineral Petrol 123:323–333

    Article  Google Scholar 

  • Boily M, Williams-Jones AE (1994) The role of magmatic and hydrothermal processes in the chemical evolution of the Strange Lake plutonic complex, Quebec-Labrador. Contrib Mineral Petrol 118:33–47

    Article  Google Scholar 

  • Chakhmouradian AR, Mitchell RH (1998) Lueshite, pyrochlore and monazite-(Ce) from apatite-dolomite carbonatite, Lesnaya Varaka complex, Kola Peninsula, Russia. Mineral Mag 62:769–782

    Article  Google Scholar 

  • Chakhmouradian AR, Wall F (2012) Rare earth elements: minerals, mines, magnets (and more). Elements 8:333–340

    Article  Google Scholar 

  • Chakhmouradian AR, Zaitsev AN (2012) Rare earth mineralization in igneous rocks: sources and processes. Elements 8:347–353

    Article  Google Scholar 

  • Dostal J (2016) Rare metal deposits associated with alkaline/peralkaline igneous rocks. In: Verplank PL, Hitzman MW (eds) Rare earth and critical elements in ore deposits. Reviews in Economic Geology vol 18. Society of Economic Geologists, Littleton, CO, pp 33–54

  • Dostal J, Kontak DJ, Karl SM (2014) The early Jurassic Bokan Mountain peralkaline granitic complex (southeastern Alaska): geochemistry, petrogenesis and rare-metal mineralization. Lithos 202:395–412

    Article  Google Scholar 

  • Duggan MB (1990) Wilkinsonite, Na2Fe4 2+Fe2 3+Si6O20, a new member of the aenigmatite group from the Warrumbungle Volcano, New South Wales, Australia. Am Mineral 75:694–701

    Google Scholar 

  • Dulhunty JA (1967) Mesozoic alkaline volcanism and Garrawilla Lavas near Mullaley, New South Wales. J Geol Soc Aust 14:133–138

    Article  Google Scholar 

  • Elderfield H, Greaves MJ (1982) The rare earth elements in seawater. Nature 296:214–219

    Article  Google Scholar 

  • Foster DA, Gray DR (2000) Evolution and structure of the Lachlan Fold Belt (Orogen) of eastern Australia. Ann Rev Earth Planet Sci 28:47–80

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrology 42(11):2033–2048

    Article  Google Scholar 

  • Gualda GA, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53:875–890

    Article  Google Scholar 

  • Gysi AP, Williams-Jones AE (2013) Hydrothermal mobilization of pegmatite-hosted REE and Zr at Strange Lake, Canada: a reaction path model. Geochim Cosmochim Acta 122:324–352

    Article  Google Scholar 

  • Harrison TM, Blichert-Toft J, Müller W, Albarede F, Holden P, Mojzsis SJ (2005) Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science 310:1947–1950

    Article  Google Scholar 

  • Hawthorne FC, Abdu YA, Ball NA, Černý P, Kristiansen R (2014) Agakhanovite-(Y), ideally (YCa) 2KBe3Si12O30, a new milarite-group mineral from the Heftetjern pegmatite, Tørdal, Southern Norway: description and crystal structure. Am Mineral 99:2084–2088

    Article  Google Scholar 

  • Helba H, Trumbull RB, Morteani G, Khalil SO, Arslan A (1997) Geochemical and petrographic studies of Ta mineralization in the Nuweibi albite granite complex, Eastern Desert, Egypt. Miner Depos 32:164–179

    Article  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Article  Google Scholar 

  • Horbe AMC, da Costa ML (1999) Geochemical evolution of a lateritic Sn–Zr–Th–Nb–Y–REE-bearing ore body derived from apogranite: the case of Pitinga, Amazonas—Brazil. J Geochem Explor 66:339–351

    Article  Google Scholar 

  • Kjarsgaard BA, Hamilton DL (1988) Liquid immiscibility and the origin of alkali-poor carbonatites. Mineral Mag 52:43–55

    Article  Google Scholar 

  • Kovalenko VI, Tsaryeva GM, Goreglyad AV, Yarmolyuk VV, Troitsky VA, Hervig RL, Farmer G (1995) The peralkaline granite-related Khaldzan-Buregtey rare metal (Zr, Nb, REE) deposit, western Mongolia. Econ Geol 90:530–547

    Article  Google Scholar 

  • Kynicky J, Chakhmouradian AR, Xu C, Krmicek L, Galiova M (2011) Distribution and evolution of zirconium mineralization in peralkaline granites and associated pegmatites of the Khan Bogd complex, southern Mongolia. Can Mineral 49:947–965

    Article  Google Scholar 

  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P et al (2002) Igneous rocks. A classification and glossary of terms. Recommendations of the IUGS Subcomission on the Systematics of Igneous Rocks, Cambridge Univ Press, Cambridge, p 236

  • Louvel M, Sanchez-Valle C, Malfait WJ, Testemale D, Hazemann JL (2013) Zr complexation in high pressure fluids and silicate melts and implications for the mobilization of HFSE in subduction zones. Geochim Cosmochim Acta 104:281–299

    Article  Google Scholar 

  • Macdonald R, Bailey DK, Sutherland DS (1970) Oversaturated peralkaline glassy trachytes from Kenya. J Petrol 11:507–517

    Article  Google Scholar 

  • Macdonald R, Bagiński B, Leat PT, White JC, Dzierżanowski P (2011) Mineral stability in peralkaline silicic rocks: information from trachytes of the Menengai volcano, Kenya. Lithos 125:553–568

    Article  Google Scholar 

  • Manning DAC (1981) The effect of fluorine on liquidus phase relationships in the system Qz–Ab–Or with excess water at 1 kb. Contrib Mineral Petrol 76:206–215

    Article  Google Scholar 

  • Markl G (2001) A new type of silicate liquid immiscibility in peralkaline nepheline syenites (lujavrites) of the Ilimaussaq complex, South Greenland. Contrib Mineral Petrol 141:458–472

    Article  Google Scholar 

  • Markl G, Marks MA, Frost BR (2010) On the controls of oxygen fugacity in the generation and crystallization of peralkaline melts. J Petrol 51:1831–1847

    Article  Google Scholar 

  • Marks MA, Hettmann K, Schilling J, Frost BR, Markl G (2011) The mineralogical diversity of alkaline igneous rocks: critical factors for the transition from miaskitic to agpaitic phase assemblages. J Petrol 52:439–455

    Article  Google Scholar 

  • McDougall I (2008) Geochronology and the evolution of Australia in the Mesozoic. Aust J Earth Sci 55:849–864

    Article  Google Scholar 

  • Meakin NS, Morgan EJ (1999) Dubbo 1:250,000 geological sheet SI/55-4, 2nd edn. Explanatory Notes. Geol Surv New South Wales, Sydney

  • Meinert LD (1992) Skarns and skarn deposits. Geosci Can 19(4):145–162

    Google Scholar 

  • Monecke T, Kempe U, Trinkler M, Thomas R, Dulski P, Wagner T (2011) Unusual rare earth element fractionation in a tin-bearing magmatic-hydrothermal system. Geology 39:295–298

    Article  Google Scholar 

  • Müller A, Seltmann R, Behr HJ (2000) Application of cathodoluminescence to magmatic quartz in a tin granite—case study from the Schellerhau Granite Complex, Eastern Erzgebirge, Germany. Miner Depos 35:169–189

    Article  Google Scholar 

  • Münker C, Pfänder JA, Weyer S, Büchl A, Kleine T, Mezger K (2003) Evolution of planetary cores and the Earth-Moon system from Nb/Ta systematics. Science 301:84–87

    Article  Google Scholar 

  • Peccerillo A, Barberio MR, Yirgu G, Ayalew D, Barbieri MW, Wu TW (2003) Relationships between mafic and peralkaline silicic magmatism in continental rift settings: a petrological, geochemical and isotopic study of the Gedemsa volcano, central Ethiopian rift. J Petrol 44:2003–2032

    Article  Google Scholar 

  • Petrella L, Williams-Jones AE, Goutier J, Walsh J (2014) The nature and origin of the rare earth element mineralization in the Misery syenitic intrusion, northern Quebec, Canada. Econ Geol 109:1643–1666

    Article  Google Scholar 

  • Philpotts AR (1978) Textural evidence for liquid immiscibility in tholeiites. Mineral Mag 42:417–425

    Article  Google Scholar 

  • Rajesh HM (2003) Outcrop-scale silicate liquid immiscibility from an alkali syenite (A-type granitoid)-pyroxenite association near Puttetti, Trivandrum Block, South India. Contrib Mineral Petrol 145:612–627

    Article  Google Scholar 

  • Ramsden AR (1992) Mineralogy of the Toongi rare metal and rare earth prospect, Dubbo, New South Wales: electron microprobe analysis of samples from drill hole TOD-2. Restricted Report 359R, CSIRO Division of Exploration Geoscience

  • Ramsden AR, French DH, Chalmers DI (1993) Volcanic-hosted rare-metals deposit at Brockman, Western Australia. Miner Depos 28:1–12

    Article  Google Scholar 

  • Rogers NW, Evans PJ, Blake S, Scott SC, Hawkesworth CJ (2004) Rates and timescales of fractional crystallization from 238U–230Th–226Ra disequilibria in trachyte lavas from Longonot volcano, Kenya. J Petrol 45:1747–1776

    Article  Google Scholar 

  • Rudnick RL, Gao SX (2003) Composition of the continental crust. Treatise Geochem 3:1–64

    Article  Google Scholar 

  • Salvi S, Williams-Jones AE (1995) Zirconosilicate phase relations in the Strange Lake (Lac Brisson) pluton, Quebec-Labrador, Canada. Am Mineral 80:1031–1040

    Article  Google Scholar 

  • Salvi S, Williams-Jones AE (1996) The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada. Geochim Cosmochim Acta 60:1917–1932

    Article  Google Scholar 

  • Salvi S, Williams-Jones AE (2006) Alteration, HFSE mineralisation and hydrocarbon formation in peralkaline igneous systems: insights from the Strange Lake Pluton, Canada. Lithos 91:19–34

    Article  Google Scholar 

  • Salvi S, Fontan F, Monchoux P, Williams-Jones AE, Moine B (2000) Hydrothermal mobilization of high field strength elements in alkaline igneous systems: evidence from the Tamazeght Complex (Morocco). Econ Geol 95:559–576

    Google Scholar 

  • Schilling J, Wu FY, McCammon C, Wenzel T, Marks MAW, Pfaff K et al (2011) The compositional variability of eudialyte-group minerals. Mineral Mag 75:87–115

    Article  Google Scholar 

  • Schmitt AK, Trumbull RB, Dulski P, Emmermann R (2002) Zr–Nb–REE mineralization in peralkaline granites from the Amis Complex, Brandberg (Namibia): evidence for magmatic pre-enrichment from melt inclusions. Econ Geol 97:399–413

    Article  Google Scholar 

  • Schwartz MO (1992) Geochemical criteria for distinguishing magmatic and metasomatic albite-enrichment in granitoids: examples from the Ta–Li granite Yichun (China) and the Sn–W deposit Tikus (Indonesia). Miner Depos 27:101–108

    Article  Google Scholar 

  • Sheard ER, Williams-Jones AE, Heiligmann M, Pederson C, Trueman DL (2012) Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada. Econ Geol 107:81–104

    Article  Google Scholar 

  • Smirnov SZ, Thomas VG, Kamenetsky VS, Kozmenko OA, Large RR (2012) Hydrosilicate liquids in the system Na2O–SiO2–H2O with NaF, NaCl and Ta: evaluation of their role in ore and mineral formation at high T and P. Petrology 20:271–285

    Article  Google Scholar 

  • Sørensen H, Bailey JC, Kogarko LN, Rose-Hansen J, Karup-Møller S (2003) Spheroidal structures in arfvedsonite lujavrite, Ilı́maussaq alkaline complex, South Greenland: an example of macro-scale liquid immiscibility. Lithos 70:1–20

    Article  Google Scholar 

  • Stepanov A, Mavrogenes JA, Meffre S, Davidson P (2014) The key role of mica during igneous concentration of tantalum. Contrib Mineral Petrol 167:1–8

    Google Scholar 

  • Sutherland FL, Graham IT, Meffre S, Zwingmann H, Pogson RE (2012) Passive-margin prolonged volcanism, East Australian Plate: outbursts, progressions, plate controls and suggested causes. Aust J Earth Sci 59:983–1005

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications, Hoboken

    Google Scholar 

  • Taylor WR, Esslemont G, Sun SS (1995) Geology of the volcanic-hosted Brockman rare-metals deposit, Halls Creek Mobile Zone, northwest Australia. II. Geochemistry and petrogenesis of the Brockman volcanics. Mineral Petrol 52:231–255

    Article  Google Scholar 

  • Thomas R, Webster JD, Rhede D, Seifert W, Rickers K, Förster HJ et al (2006) The transition from peraluminous to peralkaline granitic melts: evidence from melt inclusions and accessory minerals. Lithos 91:137–149

    Article  Google Scholar 

  • Totterdell JM, Moloney J, Korsch RJ, Krassay AA (2009) Sequence stratigraphy of the Bowen–Gunnedah and Surat Basins in New South Wales. Aust J Earth Sci 56:433–459

    Article  Google Scholar 

  • Vasyukova O, Williams-Jones AE (2014) Fluoride–silicate melt immiscibility and its role in REE ore formation: evidence from the Strange Lake rare metal deposit, Québec-Labrador, Canada. Geochim Cosmochim Acta 139:110–130

    Article  Google Scholar 

  • Veevers JJ (2012) Reconstructions before rifting and drifting reveal the geological connections between Antarctica and its conjugates in Gondwanaland. Earth Sci Rev 111:249–318

    Article  Google Scholar 

  • Veksler IV (2004) Liquid immiscibility and its role at the magmatic–hydrothermal transition: a summary of experimental studies. Chem Geol 210:7–31

    Article  Google Scholar 

  • Wang Q, Deng J, Liu H, Yang L, Wan L, Zhang R (2010) Fractal models for ore reserve estimation. Ore Geol Rev 37:2–14

    Article  Google Scholar 

  • Weaver SD, Gibson IL, Houghton BF, Wilson CJN (1990) Mobility of rare earth and other elements during crystallization of peralkaline silicic lavas. J Volcanol Geotherm Res 43:57–70

    Article  Google Scholar 

  • Weng Z, Jowitt SM, Mudd GM, Haque N (2015) A detailed assessment of global rare earth element resources: opportunities and challenges. Econ Geol 110:1925–1952

    Article  Google Scholar 

  • Whitaker ML, Nekvasil H, Lindsley DH, McCurry M (2008) Can crystallization of olivine tholeiite give rise to potassic rhyolites? An experimental investigation. Bull Volcanol 70:417–434

    Article  Google Scholar 

  • Williams-Jones AE, Migdisov AA, Samson IM (2012) Hydrothermal mobilisation of the rare earth elements: a tale of “ceria” and “yttria”. Elements 8:355–360

    Article  Google Scholar 

  • Xu YG, Chung SL, Shao H, He B (2010) Silicic magmas from the Emeishan large igneous province, Southwest China: petrogenesis and their link with the end-Guadalupian biological crisis. Lithos 119:47–60

    Article  Google Scholar 

  • Zhang M, O’Reilly SY (1997) Multiple sources for basaltic rocks from Dubbo, eastern Australia: geochemical evidence for plume—lithospheric mantle interaction. Chem Geol 136:33–54

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by an ARC Future Fellowship (FT 120100198) to Spandler. We thank Terry Ransteed and Ian Chalmers from Alkane Resource Ltd. for providing field support and access to drillcore samples and assay data, and Kevin Blake (JCU) for assistance with the electron microprobe analysis. Comments from two reviewers and editor in chief Othmar Müntener contributed to a much-improved manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Spandler.

Additional information

Communicated by Othmar Müntener.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spandler, C., Morris, C. Geology and genesis of the Toongi rare metal (Zr, Hf, Nb, Ta, Y and REE) deposit, NSW, Australia, and implications for rare metal mineralization in peralkaline igneous rocks. Contrib Mineral Petrol 171, 104 (2016). https://doi.org/10.1007/s00410-016-1316-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1316-y

Keywords

Navigation