Skip to main content

Advertisement

Log in

Highly siderophile element abundances in Eoarchean komatiite and basalt protoliths

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Plume-derived, Mg-rich, volcanic rocks (komatiites, high-Mg basalts, and their metamorphic equivalents) can record secular changes in the highly siderophile element (HSE) abundances of mantle sources. An apparent secular time-dependent enrichment trend in HSE abundances from Paleoarchean to Paleoproterozoic mantle-derived rocks could represent the protracted homogenization of a Late Veneer chondritic contaminant into the pre-Late Veneer komatiite source. To search for a possible time dependence of a late accretion signature in the Eoarchean mantle, we report new data from rare >3700 Myr-old mafic and ultramafic schists locked in supracrustal belts from the Inukjuak domain (Québec, Canada) and the Akilia association (West Greenland). Our analysis shows that some of these experienced HSE mobility and/or include a cumulate component (Touboul et al. in Chem Geol 383:63–75, 2014), whereas several of the oldest samples show some of the most depleted HSE abundances measured for rocks of this composition. We consider these new data for the oldest documented rocks of komatiite protolith in light of the Late Veneer hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abramov O, Mojzsis SJ (2009) Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459:419–422

    Article  Google Scholar 

  • Abramov O, Kring DA, Mojzsis SJ (2013) The impact environment of the Hadean Earth. Chem Erde Geochem 73:227–248

    Article  Google Scholar 

  • Anbar AD, Zahnle KJ, Arnold GL, Mojzsis SJ (2001) Extraterrestrial iridium, sediment accumulation and the habitability of the early Earth’s surface. J Geophys Res 106:3219

    Article  Google Scholar 

  • Arndt N (2003) Komatiites, kimberlites, and boninites. J Geophys Res 108:2293

    Article  Google Scholar 

  • Arndt N (2009) Earth science: trickle-down geodynamics. Nature 460:583–584

    Article  Google Scholar 

  • Arndt NT, Naldrett AJ, Pyke DR (1977) Komatiitic and iron-rich tholeiitic lavas of Munro Township, Northeast Ontario. J Petrol 18:319–369

    Article  Google Scholar 

  • Arndt N, Lesher CM, Barnes SJ (2008) Komatiite. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Asphaug E (2010) Similar-sized collisions and the diversity of planets. Chem Erde Geochem 70:199–219

    Article  Google Scholar 

  • Barnes SJ, Fiorentini M (2008) Iridium, ruthenium and rhodium in komatiites: evidence for iridium alloy saturation. Chem Geol 257:44–58

    Article  Google Scholar 

  • Barnes S-J, Naldrett A, Gorton M (1985) The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem Geol 53:303–323

    Article  Google Scholar 

  • Barnes SJ, Mungall JE, Maier WD (2015) Platinum group elements in mantle melts and mantle samples. Lithos 232:395–417

    Article  Google Scholar 

  • Bennett VC, Brandon AD, Nutman AP (2007) Coupled 142Nd–143Nd isotopic evidence for Hadean mantle dynamics. Science 318:1907–1910

    Article  Google Scholar 

  • Blichert-Toft J, Puchtel IS (2010) Depleted mantle sources through time: evidence from Lu–Hf and Sm–Nd isotope systematics of Archean komatiites. Earth Planet Sci Lett 297:598–606

    Article  Google Scholar 

  • Bottke W (2002) Debiased orbital and absolute magnitude distribution of the near-Earth objects. Icarus 156:399–433

    Article  Google Scholar 

  • Bottke WF, Levison HF, Nesvorný D, Dones L (2007) Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment? Icarus 190:203–223

    Article  Google Scholar 

  • Bottke WF, Walker RJ, Day JMD, Nesvorný D, Elkins-Tanton E (2010) Stochastic late accretion to Earth, the Moon, and Mars. Science 330:1527–1530

    Article  Google Scholar 

  • Boyet M, Blichert-Toft J, Rosing M, Storey M, Télouk Albarède (2003) 142Nd evidence for early Earth differentiation. Earth Planet Sci Lett 214:427–442

    Article  Google Scholar 

  • Brandon AD, Walker RJ, Puchtel IS, Becker H, Humayun M, Revillon S (2003) 186Os–187Os systematics of Gorgona Island komatiites: implications for early growth of the inner core. Earth Planet Sci Lett 206:411–426

    Article  Google Scholar 

  • Canup RM (2004) Simulations of a late lunar-forming impact. Int J Sol Syst Stud 168:433–456

    Google Scholar 

  • Canup R (2008) Lunar-forming collisions with pre-impact rotation. Icarus 196:518–538

    Article  Google Scholar 

  • Canup RM, Asphaug E (2001) Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412:708–712

    Article  Google Scholar 

  • Carlson RW, Boyet M (2008) Composition of the Earth’s interior: the importance of early events. Philos Trans A Math Phys Eng Sci 366:4077–4103

    Article  Google Scholar 

  • Caro G, Bourdon B, Birck J-L, Moorbath S (2006) High-precision 142Nd/144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth’s mantle. Geochim Cosmochim Acta 70:164–191

    Article  Google Scholar 

  • Cates NL, Mojzsis SJ (2006) Chemical and isotopic evidence for widespread Eoarchean metasedimentary enclaves in southern West Greenland. Geochim Cosmochim Acta 70:4229–4257

    Article  Google Scholar 

  • Cates NL, Mojzsis SJ (2007) Pre-3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, northern Québec. Earth Planet Sci Lett 255:9–21

    Article  Google Scholar 

  • Cates NL, Mojzsis SJ (2009) Metamorphic zircon, trace elements and Neoarchean metamorphism in the ca. 3.75 Ga Nuvvuagittuq supracrustal belt, Québec (Canada). Chem Geol 261:99–114

    Article  Google Scholar 

  • Cates NL, Ziegler K, Schmitt AK, Mojzsis SJ (2013) Reduced, reused and recycled: detrital zircons define a maximum age for the Eoarchean (ca. 3750–3780 Ma) Nuvvuagittuq Supracrustal Belt, Québec (Canada). Earth Planet Sci Lett 362:283–293

    Article  Google Scholar 

  • Chou CL (1978) Fractionation of siderophile elements in the Earth’s upper mantle. In: Proceedings of the 9th Lunar and Planetary Science Conference, Houston, TX, pp 219–230

  • Coltice N, Schmalzl J (2006) Mixing times in the mantle of the early Earth derived from 2-D and 3-D numerical simulations of convection. Geophys Res Lett 33:L23304

    Article  Google Scholar 

  • Ćuk M, Stewart ST (2012) Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338:1047–1052

    Article  Google Scholar 

  • Dahl TW, Stevenson DJ (2010) Turbulent mixing of metal and silicate during planet accretion: and interpretation of the Hf-W chronometer. Earth Planet Sci Lett 295:177–186

    Article  Google Scholar 

  • Dauphas N, Cates NL, Mojzsis SJ, Busigny V (2007) Identification of chemical sedimentary protoliths using iron isotopes in the >3750 Ma Nuvvuagittuq supracrustal belt, Canada. Earth Planet Sci Lett 254:358–376

    Article  Google Scholar 

  • Debaille V, O’Neill C, Brandon AD, Haenecour P, Yin Q-Z, Mattielli N, Treiman AH (2013) Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth Planet Sci Lett 373:83–92

    Article  Google Scholar 

  • Dhuime B, Hawkesworth CJ, Cawood PA, Storey CD (2012) A change in the geodynamics of continental growth 3 billion years ago. Science 335:1334–1336

    Article  Google Scholar 

  • Echeverría LM (1980) Tertiary or Mesozoic komatiites from Gorgona Island, Colombia: field relations and geochemistry. Contrib Mineral Petrol 73:253–266

    Article  Google Scholar 

  • Elkins-Tanton LT (2008) Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet Sci Lett 271:181–191

    Article  Google Scholar 

  • Fiorentini ML, Barnes SJ, Maier WD, Burnham OM, Heggie G (2011) Global variability in the platinum-group element contents of komatiites. J Petrol 52:83–112

    Article  Google Scholar 

  • Green DH (1975) Genesis of Archean peridotitic magmas and constraints on Archean geothermal gradients and tectonics. Geology 3:15–18

    Article  Google Scholar 

  • Grove TL, Parman SW, Dann JC (1999) Conditions of magma generation for Archean komatiites from the Barberton Mountainland, South Africa. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high pressure experimentation: a tribute to Francis R. (Joe) Boyd. The Geochemical Society, Houston, pp 155–167

    Google Scholar 

  • Guitreau M, Blichert-Toft J, Mojzsis SJ, Roth ASG, Bourdon B, Cates NL, Bleeker W (2014) Lu–Hf isotope systematics of the Hadean-Eoarchean Acasta Gneiss Complex (Northwest Territories, Canada). Geochim Cosmochim Acta 135:251–269

    Article  Google Scholar 

  • Halliday AN (2008) A young Moon-forming giant impact at 70–110 million years accompanied by late-stage mixing, core formation and degassing of the Earth. Philos Trans R Soc A Math Phys Eng Sci 366:4163–4181

    Article  Google Scholar 

  • Hanski E, Walker RJ, Huhma H, Polyakov GV, Balykin PA, Hoa TT, Phuong NT (2004) Origin of the Permian-Triassic komatiites, northwestern Vietnam. Contrib Mineral Petrol 147:453–469

    Article  Google Scholar 

  • Harrison TM (2009) The Hadean crust: evidence from >4 Ga Zircons. Annu Rev Earth Planet Sci 37:479–505

    Article  Google Scholar 

  • Herzberg C, Condie K, Korenaga J (2010) Thermal history of the Earth and its petrological expression. Earth Planet Sci Lett 292:79–88

    Article  Google Scholar 

  • Hopkins MD, Mojzsis SJ (2015) A protracted timeline for lunar bombardment from mineral chemistry, Ti thermometry and U–Pb geochronology of Apollo 14 melt breccia zircons. Contrib Mineral Petrol 169:30

    Article  Google Scholar 

  • Jacobsen SB (1988) Isotopic and chemical constraints on mantle–crust evolution. Geochim Cosmochim Acta 52:1341–1350

    Article  Google Scholar 

  • Jayananda M, Kano T, Peucat J-J, Channabasappa S (2008) 3.35 Ga komatiite volcanism in the western Dharwar craton, southern India: constraints from Nd isotopes and whole-rock geochemistry. Precambrian Res 162:160–179

    Article  Google Scholar 

  • Kelemen P, Kikawa E, Miller D (2004) Proceedings of the Ocean Drilling Program, Initial Reports, vol 209 (online)

  • Kimura K, Lewis RS, Anders E (1974) Distribution of gold and rhenium between nickel–iron and silicate melts: implications for the abundance of siderophile elements on the Earth and Moon. Geochim Cosmochim Acta 38:683–701

    Article  Google Scholar 

  • Kramers JD (1998) Reconciling siderophile element data in the Earth and Moon, W isotopes and the upper lunar age limit in a simple model of homogeneous accretion. Chem Geol 145:461–478

    Article  Google Scholar 

  • Krasinsky G (2002) Hidden mass in the asteroid belt. Icarus 158:98–105

    Article  Google Scholar 

  • Kruijer TS, Kleine T, Fischer-Gödde M, Sprung P (2015) Lunar tungsten isotopic evidence for the late veneer. Nature 520:534–537

    Article  Google Scholar 

  • Leinhardt ZM, Stewart ST (2012) Collisions between gravity-dominated bodies. I. Outcome regimes and scaling laws. Astrophys J 745:79

    Article  Google Scholar 

  • Lesher CM, Keays RR (2002) Komatiite-associated Ni–Cu–PGE deposits—Geology, mineralogy, geochemistry, and genesis. In: Cabri LJ (ed) The geology, geochemistry, mineralogy and mineral beneficiation of the platinum-group elements, Special vol 54. Canadian Institute of Mining, Metallurgy, and Petroleum, Montreal, pp 579–617

  • Maier WD, Barnes SJ, Campbell IH, Fiorentini ML, Peltonen P, Barnes S-J, Smithies RH (2009) Progressive mixing of meteoritic veneer into the early Earth’s deep mantle. Nature 460:620–623

    Article  Google Scholar 

  • Maier WD, Peltonen P, McDonald I, Barnes SJ, Barnes S-J, Hatton C, Vijoen F (2012) The concentration of platinum-group elements and gold in southern African and Karelian kimberlite-hosted mantle xenoliths: implications for the noble metal content of the Earth’s mantle. Chem Geol 302–303:119–135

    Article  Google Scholar 

  • Mann U, Frost DJ, Rubie DC, Becker H, Audétat (2012) Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures: implications for the origin of highly siderophile element concentrations in the Earth’s mantle. Geochim Cosmochim Acta 84:593–613

    Article  Google Scholar 

  • Manning CE, Mojzsis SJ, Harrison TM (2006) Geology, age and origin of supracrustal rocks at Akilia, West Greenland. Am J Sci 306:303–366

    Article  Google Scholar 

  • Marchi S, Bottke WF, Elkins-Tanton LT, Bierhaus M, Wuennemann Morbidelli A, Kring DA (2014) Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511:578–582

    Article  Google Scholar 

  • McGregor V, Mason B (1977) Petrogenesis and geochemistry of metabasaltic and metasedimentary enclaves in the Amitsoq gneisses, West Greenland. Am Mineral 62:887–904

    Google Scholar 

  • McLennan S, Taylor S, McGregor V (1984) Geochemistry of Archean metasedimentary rocks from West Greenland. Geochim Cosmochim Acta 48:1–13

    Article  Google Scholar 

  • McSween H Jr, Ghosh A, Grimm RE, Wilson L, Young ED (2002) Thermal evolution models of asteroids. In: Bottke WF, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tuscon, AZ, pp 559–571

    Google Scholar 

  • Morbidelli A, Lunine JI, O’Brien DP, Raymond SN, Walsh KJ (2012) Building terrestrial planets. Annu Rev Earth Planet Sci 40:251–275

    Article  Google Scholar 

  • Mouri H, Maier WD, Brandl G (2013) On the possible occurrence of komatiites in the Archean high-grade polymetamorphic central zone of the Limpopo Belt, South Africa. S Afr J Geol 116:55–66

    Article  Google Scholar 

  • Mungall JE, Brenan JM (2014) Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle–crust fractionation of the chalcophile elements. Geochim Cosmochim Acta 125:265–289

    Article  Google Scholar 

  • Nesvorný D, Jenniskens P, Levison HF, Bottke WF, Vokrouhlický (2010) Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys J 713:816–836

    Article  Google Scholar 

  • Norman MD, Nemchin AA (2014) A 4.2 billion year old impact basin on the Moon: U–Pb dating of zirconolite and apatite in lunar melt rock 67955. Earth Planet Sci Lett 388:387–398

    Article  Google Scholar 

  • Nutman AP, McGregor VR, Friend CRL, Bennett VC, Kinny PD (1996) The Itsaq Gneiss complex of southern West Greenland; the world’s most extensive record of early crustal evolution (3900–3600 Ma). Precambrian Res 78:1–39

    Article  Google Scholar 

  • O’Neil J, Maurice C, Stevenson RK, Larocque J, Cloquet C, David J, Francis D (2007) The geology of the 3.8 Ga Nuvvuagittuq (Porpoise Cove) greenstone belt, northeastern Superior Province, Canada. In: Kranendonk VMJ, Smithies RH, Bennett V (eds) Earth’s oldest rocks. Elsevier, Amsterdam, pp 219–254

    Chapter  Google Scholar 

  • O’Neil J, Carlson RW, Francis D, Stevenson RK (2008) Neodymium-142 evidence for Hadean mafic crust. Science 321:1828–1831

    Article  Google Scholar 

  • O’Neil J, Francis D, Carlson RW (2011) Implications of the Nuvvuagittuq greenstone belt for the formation of Earth’s early crust. J Petrol 52:985–1009

    Article  Google Scholar 

  • O’Neil J, Carlson RW, Paquette J-L, Francis D (2012) Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt. Precambrian Res 220–221:23–44

    Article  Google Scholar 

  • O’Neill C, Debaille V, Griffin W (2013) Deep earth recycling in the Hadean and constraints on surface tectonics. Am J Sci 313:912–932

    Article  Google Scholar 

  • Puchtel IS, Walker RJ, Touboul M, Nisbet EG, Byerly GR (2014) Insights into early Earth from the Pt–Re–Os isotope and highly siderophile element abundance systematics of Barberton komatiites. Geochim Cosmochim Acta 125:394–413

    Article  Google Scholar 

  • Richter FM (1988) A major change in the thermal state of the Earth at the Archean–Proterozoic boundary: consequences for the nature and preservation of continental lithosphere. J Petrol Spec 1:39–52

  • Righter K, Danielson LR, Pando KM, Williams J, Humayun M, Hervig RL, Sharp TG (2015) Highly siderophile element (HSE) abundances in the mantle of Mars are due to core formation at high pressure and temperature. Meteorit Planet Sci 50:604–631

    Article  Google Scholar 

  • Rizo H, Boyet M, Blichert-Toft J, O’Neil J, Rosing MT, Paquette J-L (2012) The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks. Nature 491:96–100

    Article  Google Scholar 

  • Rizo H, Walker RJ, Carlson RW, Touboul M, Horan MF, Puchtel IS, Boyet M, Rosing MT (2016) Early Earth differentiation investigated through 142Nd, 182W, and highly siderophile element abundances in samples from Isua, Greenland. Geochim Cosmochim Acta 175:319–336

    Article  Google Scholar 

  • Roth ASG, Bourdon B, Mojzsis SJ, Rudge JF, Guitreau M, Blichert-Toft J (2014) Combined 147,146Sm–143,142Nd constraints on the longevity and residence time of early terrestrial crust. Geochem Geophys Geosyst 15:2329–2345

    Article  Google Scholar 

  • Rubie DC, Melosh HJ, Reid JE, Liebske C, Righter K (2003) Mechanisms of metal–silicate equilibration in the terrestrial magma ocean. Earth Planet Sci Lett 205:239–255

    Article  Google Scholar 

  • Rubie DC, Frost DJ, Mann U, Asahara Y, Nimmo F, Tsuno K, Kegler P, Holzeid A, Palme H (2011) Heterogeneous accretion, composition and core–mantle differentiation of the Earth. Earth Planet Sci Lett 301:31–42

    Article  Google Scholar 

  • Rudge JF, Kleine T, Bourdon B (2010) Broad bounds on Earth’s accretion and core formation constrained by geochemical models. Nat Geosci 3:439–443

    Article  Google Scholar 

  • Savard D, Barnes S-J, Meisel T (2010) Comparison between nickel–sulfur fire assay Te Co-precipitation and isotope dilution with high-pressure asher acid digestion for the determination of platinum-group elements, rhenium, and gold. Geostand Geoanalytical Res 34:281–291

    Article  Google Scholar 

  • Stevenson D (1981) Models of the Earth’s core. Science 214:611–618

    Article  Google Scholar 

  • Tera F, Papanastassiou D, Wasserburg G (1974) Isotopic evidence for a terminal lunar cataclysm. Earth Planet Sci Lett 22:1–21

    Article  Google Scholar 

  • Touboul M, Puchtel IS, Walker RJ (2012) 182W evidence for long-term preservation of early mantle differentiation products. Science 335:1065–1069

    Article  Google Scholar 

  • Touboul M, Liu J, O’Neil J, Puchtel IS, Walker RJ (2014) New insights into the Hadean mantle revealed by 182W and highly siderophile element abundances of supracrustal rocks from the Nuvvuagittuq Greenstone Belt, Quebec, Canada. Chem Geol 383:63–75

    Article  Google Scholar 

  • Touboul M, Puchtel IS, Walker RJ (2015) Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon. Nature 520:530–533

    Article  Google Scholar 

  • Valley JW, Cavosie AJ, Ushikubo T, Reinhard DA, Lawrence DF, Larson DJ, Clifton PH, Kelly TF, Wilde SA, Moser DE, Spicuzza MJ (2014) Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nat Geosci 7:219–223

    Article  Google Scholar 

  • Viljoen M, Viljoen R (1969) The geology and geochemistry of the lower ultramafic unit of the Onverwacht Group and a proposed new class of igneous rocks. Geol Soc S Afr Spec Publ 2:55–86

    Google Scholar 

  • Walker RJ (2009) Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem Erde Geochem 69:101–125

    Article  Google Scholar 

  • Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475:206–209

    Article  Google Scholar 

  • Wang Z, Becker H (2013) Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. Nature 499:328–331

    Article  Google Scholar 

  • Willbold M, Elliott T, Moorbath S (2011) The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment. Nature 477:195–198

    Article  Google Scholar 

  • Willbold M, Mojzsis SJ, Chen H-W, Elliott T (2015) Tungsten isotope composition of the Acasta Gneiss Complex. Earth Planet Sci Lett 419:168–177

    Article  Google Scholar 

  • Wood BJ, Halliday AN (2005) Cooling of the Earth and core formation after the giant impact. Nature 437:1345–1348

    Article  Google Scholar 

Download references

Acknowledgments

We have benefitted from discussions and debates on the topics presented herein with (in alphabetical order): N. Arndt, W. Bottke, R. Brasser, S. Marchi, A. Morbidelli, R. Walker, S. Werner, and M. Willbold. We further thank N. Arndt for his constructive comments on an earlier version of this manuscript. We also thank S.-J. Barnes and D. Savard at the Université du Québec à Chicoutimi for performing the HSE analyses. E.A.F. was supported by a NASA Earth and Space Science Fellowship (NESSF), “Exploring the Darkest of the Dark Ages,” and the Zonta International Amelia Earhart Fellowship. S.J.M. acknowledges support from the NASA Lunar Science Institute through the Center for Lunar Origin and Evolution (CLOE) and the NASA Exobiology Program. A substantial portion of this manuscript was completed while S.J.M. held a Distinguished Research Professorship in Budapest at the Research Center for Astronomy and Earth Sciences of the Hungarian Academy of Sciences. This is a contribution of the Collaborative for Research in Origins (CRiO), which is funded by the John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elizabeth A. Frank or Stephen J. Mojzsis.

Additional information

Communicated by Hans Keppler.

Stephen J. Mojzsis: Collaborative for Research in Origins (CRiO).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, E.A., Maier, W.D. & Mojzsis, S.J. Highly siderophile element abundances in Eoarchean komatiite and basalt protoliths. Contrib Mineral Petrol 171, 29 (2016). https://doi.org/10.1007/s00410-016-1243-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1243-y

Keywords

Navigation