Skip to main content
Log in

Magmatic processes under Quizapu volcano, Chile, identified from geochemical and textural studies

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Quizapu is part of a linear system of active volcanos in central Chile. The volcanic petrology and geology have been used to infer the plumbing system beneath the volcano. The 1846–1847 eruption (~5 km3) started with small flows of dacite, then changed to a range of andesite–dacite compositions and finally terminated with large flows of dacite. Andesitic enclaves (<10 %) occur in some of these flows. Activity restarted explosively in 1932 (~4 km3 DRE) with an initial andesite–dacite ash, followed by uniform dacite ash and then a terminal andesite ash. All samples, including the enclaves, have chemical compositions that lie on an almost perfect mixing line, with a few exceptions. The abundant plagioclase macrocrysts in the matrix were divided into five petrographic classes on the basis of colour in cold-cathode cathodoluminescence images and zonation in visible light. All populations of macrocrysts have CSDs characteristic of coarsening, although they differ in detail. Two classes can be ascribed to growth in andesite and dacite magmas, but the three other classes are associated with particular magma batches. A model is developed which started with ponding of andesite magma in the crust. This differentiated to produce a dacite magma, most of which probably solidified to make a granodiorite batholith. Activation of a N–S fault enabled volcanism: andesite magma traversed the dacite-filled chamber, heating and raising it up into storage areas hosted by the fault, where it mixed to form a homogeneous magma. A short time before the 1846–1847 eruption, more andesite magma was injected into the shallow part of the system where it mingled with existing mixed magmas. The first magma to be erupted from Quizapu was a dacite, but soon other storage areas along the fault started to feed the system—first mixed magmas, then back to dacites. The eruption then terminated until 1932 when renewed injection of andesite into the system created a conduit that tapped an undegassed dacite chamber and resulted in a strong explosive eruption. The whole story is one of continual andesite magmatism, modulated by storage, degassing and mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bacon CR (1986) Magmatic inclusions in silicic and intermediate volcanic-rocks. J Geophys Res Solid Earth Planets 91(B6):6091–6112. doi:10.1029/JB091iB06p06091

    Article  Google Scholar 

  • Benavente OM (2010) Actividad Hidrotermal Asociada a los Complejos Volcánicos Planchón-Peteroa y Descabezado Grande-Quizapu-Cerro Azul, 35°s y 36°s, Zona Volcánica Sur, Chile. PhD thesis, Universidad de Chile

  • Cembrano J, Lara L (2009) The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review. Tectonophysics 471(1–2):96–113. doi:10.1016/j.tecto.2009.02.038

    Article  Google Scholar 

  • Domeyko I (1903) Memoria sobre la Estructura Geológica de Chile en la Latitud de Concepción, desde la Bahía de Talcahuano hasta la Cumbre de la Cordillera de Pichachén y Descripción del Volcán Antuco. Jeolojia 5:123–172

    Google Scholar 

  • Glazner AF (2014) Magmatic life at low Reynolds number. Geology 42(11):935–938. doi:10.1130/G36078.1

    Article  Google Scholar 

  • Gotze J et al (2013) Optical microscope–cathodoluminescence (OM–CL) imaging as a powerful tool to reveal internal textures of minerals. Mineral Petrol 107(3):373–392. doi:10.1007/s00710-012-0256-0

    Article  Google Scholar 

  • Govindaraju K (1994) Compilation of working values and samples description for 383 geostandards. Geostand Newsl 18, special issue 1–158

  • Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis—equilibrium and kinetic considerations. Geochim Cosmochim Acta 48(7):1467–1477. doi:10.1016/0016-7037(84)90403-4

    Article  Google Scholar 

  • Higgins MD (2000) Measurement of crystal size distributions. Am Mineral 85:1105–1116. doi:10.2138/am-2000-8-901

    Article  Google Scholar 

  • Higgins MD (2006) Quantitative textural measurements in igneous and metamorphic Petrology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Higgins MD (2010) Imaging birefringent minerals without extinction using circularly polarized light. Can Min 48(1):231–235. doi:10.3749/canmin.48.1.231

    Article  Google Scholar 

  • Higgins MD (2011) Textural coarsening in igneous rocks. Int Geol Rev 53(3):354–376. doi:10.1080/00206814.2010.496177

    Article  Google Scholar 

  • Hildreth W, Drake RE (1992) Volcán Quizapu, Chilean Andes. Bull Volcanol 54(2):93–125. doi:10.1007/bf00278002

    Article  Google Scholar 

  • Lomnitz C (2004) Major earthquakes of Chile: a historical survey, 1535–1960. Seismol Res Lett 75(3):368–378. doi:10.1785/gssrl.75.3.368

    Article  Google Scholar 

  • Manga M, Brodsky E (2006) Seismic triggering of eruptions in the far field: volcanoes and geysers. Annu Rev Earth Planet Sci 34:263–291. doi:10.1146/annurev.earth.34.031405.125125

    Article  Google Scholar 

  • Mora CI, Ramseyer K (1992) Cathodoluminescence of coexisting plagioclases, Boehls Butte anorthosite—Cl activators and fluid-flow paths. Am Mineral 77(11–12):1258–1265

    Google Scholar 

  • Navez J (1995) Détermination d’éléments en traces dans les roches silicatées par ICP-MS. Musée Royal d’Afrique centrale (Tervuren, Belgique). Rapport annuel 1993 & 1994, pp 139–147

  • Pagel M et al (2000) Cathodoluminescence in geosciences. Springer, Berlin

    Book  Google Scholar 

  • Perugini D et al (2012) The space and time complexity of chaotic mixing of silicate melts: implications for igneous petrology. Lithos 155:326–340. doi:10.1016/j.lithos.2012.09.010

    Article  Google Scholar 

  • Rasband WS (2010) ImageJ. U. S. National Institutes of Health, Bethesda. http://rsb.info.nih.gov/ij/

  • Robillier M (1930) Erupciones volcauicas en Chile. Bull Volcanol 3(3):135–138. doi:10.1007/bf02720259

    Article  Google Scholar 

  • Ruprecht P, Bachmann O (2010) Pre-eruptive reheating during magma mixing at Quizapu volcano and the implications for the explosiveness of silicic arc volcanoes. Geology 38(10):919–922. doi:10.1130/g31110.1

    Article  Google Scholar 

  • Ruprecht P, Bachmann O (2011) ERRATUM: pre-eruptive reheating during magma mixing at Quizapu volcano and the implications for the explosiveness of silicic arc volcanoes. Geology 39(8):742

    Google Scholar 

  • Ruprecht P, Cooper KM (2012) Integrating the uranium-series and elemental diffusion geochronometers in mixed magmas from volcan Quizapu, Central Chile. J Petrol 53(4):841–871. doi:10.1093/petrology/egs001

    Article  Google Scholar 

  • Ruprecht P et al (2008) Modeling of gas-driven magmatic overturn: tracking of phenocryst dispersal and gathering during magma mixing. Geochem Geophys Geosyst 9(7):Q07017. doi:10.1029/2008gc002022

    Article  Google Scholar 

  • Ruprecht P et al (2012) The crustal magma storage system of Volcan Quizapu, Chile, and the effects of magma mixing on magma diversity. J Petrol 53(4):801–840. doi:10.1093/petrology/egs002

    Article  Google Scholar 

  • Simakin AG, Bindeman IN (2008) Evolution of crystal sizes in the series of dissolution and precipitation events in open magma systems. J Volcanol Geotherm Res 177(4):997–1010. doi:10.1016/j.jvolgeores.2008.07.012

    Article  Google Scholar 

  • Voos S (2013) Geochimie et textures des produits du Quizapu (Chili). MSc thesis. Univ de Liege, Belgium

  • Watt SFL et al (2009) The influence of great earthquakes on volcanic eruption rate along the Chilean subduction zone. Earth Planet Sci Lett 277(3–4):399–407. doi:10.1016/j.epsl.2008.11.005

    Article  Google Scholar 

  • Wiesmaier S et al (2015) Magma mixing enhanced by bubble segregation. Solid Earth 6(3):1007–1023. doi:10.5194/se-6-1007-2015

    Article  Google Scholar 

Download references

Acknowledgments

We thank Diego Morata, director of ‘Centro de Excelencia en Geotermia de los Andes’, Universidad de Chile, Santiago, for logistical help and hosting MDH during his sabbaticals in Santiago, Chile. Oscar Benavente and Cesar Briones helped immensely in the field with the geology and the horses. Philipp Ruprecht supplied sample locations for his samples and gave us a constructive review of the manuscript. Research funding was provided by an NSERC (Canada) Discovery Grant to MDH and FNRS (Belgium) (CDR 19519719) to JVA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Higgins.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higgins, M.D., Voos, S. & Vander Auwera, J. Magmatic processes under Quizapu volcano, Chile, identified from geochemical and textural studies. Contrib Mineral Petrol 170, 51 (2015). https://doi.org/10.1007/s00410-015-1209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1209-5

Keywords

Navigation