Skip to main content
Log in

Halogens and noble gases in Mathematician Ridge meta-gabbros, NE Pacific: implications for oceanic hydrothermal root zones and global volatile cycles

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Six variably amphibolitised meta-gabbros cut by quartz–epidote veins containing high-salinity brine, and vapour fluid inclusions were investigated for halogen (Cl, Br, I) and noble gas (He, Ne, Ar, Kr, Xe) concentrations. The primary aims were to investigate fluid sources and interactions in hydrothermal root zones and determine the concentrations and behaviours of these elements in altered oceanic crust, which is poorly known, but has important implications for global volatile (re)cycling. Amphiboles in each sample have average concentrations of 0.1–0.5 wt% Cl, 0.5–3 ppm Br and 5–68 ppb I. Amphibole has Br/Cl of ~0.0004 that is about ten times lower than coexisting fluid inclusions and seawater, and I/Cl of 2–44 × 10−6 that is 3–5 times lower than coexisting fluid inclusions but higher than seawater. The amphibole and fluid compositions are attributed to mixing halogens introduced by seawater with a large halogen component remobilised from mafic lithologies in the crust and fractionation of halogens between fluids and metamorphic amphibole formed at low water–rock ratios. The metamorphic amphibole and hydrothermal quartz are dominated by seawater-derived atmospheric Ne, Ar, Kr and Xe and mantle-derived He, with 3He/4He of ~9 R/Ra (Ra = atmospheric ratio). The amphibole and quartz preserve high 4He concentrations that are similar to MORB glasses and have noble gas abundance ratios with high 4He/36Ar and 22Ne/36Ar that are greater than seawater and air. These characteristics result from the high solubility of light noble gases in amphibole and suggest that all the noble gases can behave similarly to ‘excess 40Ar’ in metamorphic hydrothermal root zones. All noble gases are therefore trapped in hydrous minerals to some extent and can be inefficiently lost during metamorphism implying that even the lightest noble gases (He and Ne) can potentially be subducted into the Earth’s mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bach W, Frueh-Green GL (2010) Alteration of the oceanic lithosphere and implications for seafloor processes. Elements 6:173–178

    Article  Google Scholar 

  • Baker ET, Lupton JE (1990) Changes in submarine hydrothermal He-3/heat ratios as an indicator of magmatic tectonic activity. Nature 346:556–558

    Article  Google Scholar 

  • Ballentine CJ, Marty B, Lollar BS, Cassidy M (2005) Neon isotopes constrain convection and volatile origin in the earth’s mantle. Nature 433:33–38

    Article  Google Scholar 

  • Barnes JD, Cisneros M (2012) Mineralogical control on the chlorine isotope composition of altered oceanic crust. Chem Geol 326–327:51–60

    Article  Google Scholar 

  • Batiza R, Vanko DA (1985) Petrologic evolution of large failed rifts in the eastern Pacific: petrology of volcanic and plutonic rocks from the Mathematician Ridge area and the Guadalupe Trough. J Petrol 26:564–602

    Article  Google Scholar 

  • Berndt ME, Seyfried WE (1990) Boron, bromine and other trace-elements as clues to the fate of chlorine in midocean ridge vent fluids. Geochim Cosmochim Acta 54:2235–2245

    Article  Google Scholar 

  • Berndt ME, Seyfried WE (1997) Calibration of Br/Cl fractionation during subcritical phase separation of seawater: possible halite at 9 to 10 degrees N East Pacific Rise. Geochim Cosmochim Acta 61:2849–2854

    Article  Google Scholar 

  • Bischoff JL, Dickson FW (1975) Seawater–basalt interaction at 200 degrees C and 500 bars—implications for origin of sea-floor heavy-metal deposits and regulation of seawater chemistry. Earth Planet Sci Lett 25:385–397

    Article  Google Scholar 

  • Bonifacie M, Jendrzejewski N, Agrinier P, Humler E, Coleman M, Javoy M (2008) The chlorine isotope composition of earth’s mantle. Science 319:1518–1520

    Article  Google Scholar 

  • Botz R, Winckler G, Bayer R, Schmitt M, Schmidt M, Garbe-Schonberg D, Stoffers P, Kristjansson JK (1999) Origin of trace gases in submarine hydrothermal vents of the Kolbeinsey Ridge, north Iceland. Earth Planet Sci Lett 171:83–93

    Article  Google Scholar 

  • Butterfield DA, Massoth GJ, McDuff RE, Lupton JE, Lilley MD (1990) Geochemistry of hydrothermal fluids from axial seamount hydrothermal emissions study vent field, Juan de Fuca Ridge—subseafloor boiling and subsequent fluid–rock interaction. J Geophys Res Solid Earth Planets 95:12895–12921

    Article  Google Scholar 

  • Butterfield DA, McDuff RE, Mottl MJ, Lilley MD, Lupton JE, Massoth GJ (1994) Gradients in the composition of hydrothermal fluids from the Endeavour segment vent field - phase separation and brine loss. J Geophys Res Solid Earth 99:9561–9583

    Article  Google Scholar 

  • Campbell AC, Edmond JM (1989) Halide systematics of submarine hydrothermal vents. Nature 342:168–170

    Article  Google Scholar 

  • Dixon JE, Stolper EM (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part II: applications to degassing. J Petrol 36:1633–1646

    Google Scholar 

  • Du Z, Allan NL, Blundy JD, Purton JA, Brooker RA (2008) Atomistic simulation of the mechanisms of noble gas incorporation in minerals. Geochim Cosmochim Acta 72:554–573

    Article  Google Scholar 

  • Edmond JM, Measures C, McDuff RE, Chan LH, Collier R, Grant B, Gordon LI, Corliss JB (1979) Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean—Galapagos data. Earth Planet Sci Lett 46:1–18

    Article  Google Scholar 

  • Floyd PA, Fuge R (1982) Primary and secondary alkali and halogen element distribution in Iceland Research Drilling Project basalts from eastern Iceland. J Geophys Res 87:6477–6488

    Article  Google Scholar 

  • Foustoukos DI, Seyfried WE (2007) Trace element partitioning between vapor, brine and halite under extreme phase separation conditions. Geochim Cosmochim Acta 71:2056–2071

    Article  Google Scholar 

  • Graham DW (2002) Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: characterisation of mantle source reservoirs. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry. Geochemical Society/Mineralogical Society of America, Washington, pp 245–317

    Google Scholar 

  • Harper CL, Jacobsen SB (1996) Noble gases and earth’s accretion. Science 273:1814–1818

    Article  Google Scholar 

  • Hilton DR, Porcelli D (2013) Noble gases as tracers of mantle processes. In: Carlson RL (ed) The mantle and core—treatise of geochemistry, 2nd edn. Elsevier, Oxford, pp 277–318

    Google Scholar 

  • Hilton DR, Fischer TP, Marty B (2002) Noble gases and volatile recycling at subduction zones. In: Porcelli D, Ballentine C, Wieler R (eds) Noble gases in geochemistry and cosmochemistry. Mineralogical Society of America, Washington, pp 319–370

    Google Scholar 

  • Holland G, Ballentine CJ (2006) Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441:186–191

    Article  Google Scholar 

  • Honda M, Patterson DB (1999) Systematic elemental fractionation of mantle-derived helium, neon, and argon in mid-oceanic ridge glasses. Geochim Cosmochim Acta 63:2863–2874

    Article  Google Scholar 

  • Honda M, McDougall I, Patterson DB, Doulgeris A, Clague DA (1991) Possible solar noble-gas component in Hawaiian basalts. Nature 349:149–151

    Article  Google Scholar 

  • Honda M, Nutman AP, Bennett VC, Yatsevich I (2004) Radiogenic, nucleogenic and fissiogenic noble gas compositions in early Archaean magmatic zircons from Greenland. Geochem J 38:265–269

    Article  Google Scholar 

  • Ito E, Harris DM, Anderson AT (1983) Alteration of oceanic-crust and geologic cycling of chlorine and water. Geochim Cosmochim Acta 47:1613–1624

    Article  Google Scholar 

  • Jackson CRM, Parman SW, Kelley SP, Cooper RF (2013) Noble gas transport into the mantle facilitated by high solubility in amphibole. Nature Geosci 6:562–565

    Article  Google Scholar 

  • Jackson CRM, Parman SW, Kelley SP, Cooper RF (2015) Light noble gas dissolution into ring structure-bearing materials and lattice influences on noble gas recycling. Geochimica et Cosmochimica Acta 159:1–15

    Article  Google Scholar 

  • Jacobson S (1975) Dashkesanite: high-chlorine amphibole from St. Pauls rocks Equatorial Atlantic and Transcaucasia, USSR. Smithsonian Contrib Earth Sci 14:17–22

    Google Scholar 

  • Jean-Baptiste P, Bougault H, Vangriesheim A, Charlou JL, Radford-Knoery J, Fouquet Y, Needham D, German C (1998) Mantle He-3 in hydrothermal vents and plume of the Lucky Strike site (MAR 37 degrees 17′ N) and associated geothermal heat flux. Earth Planet Sci Lett 157:69–77

    Article  Google Scholar 

  • Kelley S (2002) Excess argon in K–Ar and Ar–Ar geochronology. Chem Geol 188:1–22

    Article  Google Scholar 

  • Kelley DS, Delaney JR (1987) 2-Phase separation and fracturing in mid-ocean ridge gabbros at temperatures greater than 700-degrees-C. Earth Planet Sci Lett 83:53–66

    Article  Google Scholar 

  • Kelley DS, Gillis KM, Thompson G (1993) Fluid evolution in submarine magma-hydrothermal systems at the Mid-Atlantic Ridge. J Geophys Res Solid Earth 98:19579–19596

    Article  Google Scholar 

  • Kendrick MA (2012) High precision Cl, Br and I determination in mineral standards using the noble gas method. Chem Geol 292–293:116–126

    Article  Google Scholar 

  • Kendrick MA, Burnard P (2013) Noble gases and halogens in fluid inclusions: a journey through the earth’s crust. In: Burnard P (ed) The noble gases as geochemical tracers. Springer, Berlin, pp 319–369

    Chapter  Google Scholar 

  • Kendrick MA, Scambelluri M, Honda M, Phillips D (2011) High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. Nat Geosci 4:807–812

    Article  Google Scholar 

  • Kendrick MA, Arculus RJ, Burnard P, Honda M (2013a) Quantifying brine assimilation by submarine magmas: examples from the Galápagos Spreading Centre and Lau Basin. Geochim Cosmochim Acta 123:150–165

    Article  Google Scholar 

  • Kendrick MA, Honda M, Pettke T, Scambelluri M, Phillips D, Giuliani A (2013b) Subduction zone fluxes of halogens and noble gases in seafloor and forearc serpentinites. Earth Planet Sci Lett 365:86–96

    Article  Google Scholar 

  • Kendrick MA, Arculus RJ, Danyushevsky L, Kamenetsky VS, Woodhead J, Honda M (2014) Subduction-related halogens (Cl, Br and I) and H2O in magmatic glasses from Southwest Pacific Backarc Basins. Earth Planet Sci Lett 400:165–176

    Article  Google Scholar 

  • Kendrick MA, Jackson MG, Hauri E, Phillips D (2015) The halogen (F, Cl, Br, I) and H2O systematics of Samoan lavas: assimilated seawater, EM2 and high 3He/4He components. Earth Planet Sci Lett 410:197–209

    Article  Google Scholar 

  • Kennedy BM (1988) Noble gases in vent water from the Juan de Fuca Ridge. Geochim Cosmochim Acta 52:1929–1935

    Article  Google Scholar 

  • Klitgord KD, Mammerickx J (1982) Northern East Pacific Rise—magnetic anomaly and bathymetric framework. J Geophys Res 87:6725

    Article  Google Scholar 

  • Kullerud K (2000) Occurrence and origin of Cl-rich amphibole and biotite in the earth’s crust—implications for fluid composition and evolution. In: Stober I, Bucher K (eds) Hydrogeology of crystalline rocks. Springer, Dordrecht, pp 205–225

    Chapter  Google Scholar 

  • Kullerud K, Erambert M (1999) Cl-scapolite, Cl-amphibole, and plagioclase equilibria in ductile shear zones at Nusfjord, Lofoten, Norway: implications for fluid compositional evolution during fluid–mineral interaction in the deep crust. Geochim Cosmochim Acta 63:3829–3844

    Article  Google Scholar 

  • Liebscher A, Luders V, Heinrich W, Schettler G (2006) Br/Cl signature of hydrothermal fluids: liquid–vapour fractionation of bromine revisited. Geofluids 6:113–121

    Article  Google Scholar 

  • Lupton JE, Craig H (1975) Excesses in HE-3 in oceanic basalts—evidence for terrestrial primordial helium. Earth Planet Sci Lett 26:133–139

    Article  Google Scholar 

  • Lupton JE, Baker ET, Massoth GJ (1989) Variable 3He/heat ratios in submarine hydrothermal systems: evidence from two plumes over the Juan de Fuca ridge. Nature 337:161–164

    Article  Google Scholar 

  • Lupton JE, Baker ET, Massoth GJ (1999) Helium, heat, and the generation of hydrothermal event plumes at mid-ocean ridges. Earth Planet Sci Lett 171:343–350

    Article  Google Scholar 

  • Markl G, Bucher K (1998) Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks. Nature 391:781–783

    Article  Google Scholar 

  • Marshall LJ, Oliver NHS (2006) Monitoring fluid chemistry in iron oxide–copper–gold-related metasomatic processes, eastern Mt Isa Block, Australia. Geofluids 6:45–66

    Article  Google Scholar 

  • Marty B, Zimmermann L (1999) Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assessment of shallow-level fractionation and characterization of source composition. Geochim Cosmochim Acta 63:3619–3633

    Article  Google Scholar 

  • Matsubara K, Matsuda J, Nagao K, Kita I, Taguchi S (1988) Xe in amorphous silica—a new thermometer in geothermal systems. Geophys Res Lett 15:657–660

    Article  Google Scholar 

  • Matsuda J, Nagao K (1986) Noble-gas abundances in a deep-sea sediment core from eastern equatorial Pacific. Geochem J 20:71–80

    Article  Google Scholar 

  • Matsumoto T, Chen Y, Matsuda J-I (2001) Concomitant occurrence of primordial and recycled noble gases in the earth’s mantle. Earth Planet Sci Lett 185:35–47

    Article  Google Scholar 

  • McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method. Oxford University Press, New York

  • Moreira M (2013) Noble gas constraints on the origin and evolution of earth’s volatiles. Geochem Perspect 2:229–403

    Article  Google Scholar 

  • Moreira M, Kunz J, Allegre C (1998) Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science 279:1178–1181

    Article  Google Scholar 

  • Moreira M, Blusztajn J, Curtice J, Hart S, Dick H, Kurz MD (2003) He and Ne isotopes in oceanic crust: implications for noble gas recycling in the mantle. Earth Planet Sci Lett 216:635–643

    Article  Google Scholar 

  • Mottl MJ, Seewald JS, Wheat CG, Tivey MK, Michael PJ, Proskurowski G, McCollom TM, Reeves E, Sharkey J, You CF, Chan LH, Pichler T (2011) Chemistry of hot springs along the Eastern Lau Spreading Center. Geochim Cosmochim Acta 75:1013–1038

    Article  Google Scholar 

  • Mukhopadhyay S (2012) Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486:101–104

    Article  Google Scholar 

  • Muramatsu Y, Wedepohl KH (1998) The distribution of iodine in the earth’s crust. Chem Geol 147:201–216

    Article  Google Scholar 

  • Nehlig P (1991) Salinity of oceanic hydrothermal fluids: a fluid inclusion study. Earth Planet Sci Lett 102:310–325

    Article  Google Scholar 

  • Nehlig P, Juteau T (1988) Deep crustal seawater penetration and circulation at ocean ridges—evidence from the Oman ophiolite. Mar Geol 84:209–228

    Article  Google Scholar 

  • Oosting SE, Von Damm KL (1996) Bromide/chloride fractionation in seafloor hydrothermal fluids from 9–10 N East Pacific Rise. Earth Planet Sci Lett 144:133–145

    Article  Google Scholar 

  • Ozima M, Podosek FA (2002) Noble gas geochemistry. Cambridge University Press, Cambridge

    Google Scholar 

  • Parai R, Mukhopadhyay S (2012) How large is the subducted water flux? New constraints on mantle regassing rates. Earth Planet Sci Lett 317:396–406

    Article  Google Scholar 

  • Peacock SM (1990) Fluid processes in subduction zones. Science 248:329–337

    Article  Google Scholar 

  • Philippot P, Agrinier P, Scambelluri M (1998) Chlorine cycling during subduction of altered oceanic crust. Earth Planet Sci Lett 161:33–44

    Article  Google Scholar 

  • Porcelli D, Ballentine CJ (2002) Models for the distribution of terrestrial noble gases and evolution of the atmosphere. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry. Mineralogical Society of America, Washington, pp 411–480

    Google Scholar 

  • Porcelli D, Wasserburg GJ (1995) Mass transfer of helium, neon, argon, and xenon through a steady-state upper mantle. Geochim Cosmochim Acta 59:4921–4937

    Article  Google Scholar 

  • Prichard HM, Cann JR (1982) Petrology and mineralogy of dredged gabbro from Gettysburg Bank, Eastern Atlantic. Contrib Mineral Petrol 79:46–55

    Article  Google Scholar 

  • Reeves EP, Seewald JS, Saccocia P, Bach W, Craddock PR, Shanks WC, Sylva SP, Walsh E, Pichler T, Rosner M (2011) Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochim Cosmochim Acta 75:1088–1123

    Article  Google Scholar 

  • Richard A, Banks DA, Mercadier J, Boiron M-C, Cuney M, Cathelineau M (2011) An evaporated seawater origin for the ore-forming brines in unconformity-related uranium deposits (Athabasca Basin, Canada): Cl/Br and [delta]37Cl analysis of fluid inclusions. Geochim Cosmochim Acta 75:2792–2810

    Article  Google Scholar 

  • Roddick JC (1983) High precision intercalibration of 40Ar–39Ar standards. Geochim Cosmochim Acta 47:887–898

    Article  Google Scholar 

  • Rudnicki MD, Elderfield H (1992) Helium, radon and manganese at the tag and Snake-Pit hydrothermal vent fields, 26-degrees and 23-degrees-N, Mid-Atlantic Ridge. Earth Planet Sci Lett 113:307–321

    Article  Google Scholar 

  • Rüpke LH, Morgan JP, Hort M, Connolly JAD (2004) Serpentine and the subduction zone water cycle. Earth Planet Sci Lett 223:17–34

    Article  Google Scholar 

  • Sano T, Miyoshi M, Ingle S, Banerjee NR, Ishimoto M, Fukuoka T (2008) Boron and chlorine contents of upper oceanic crust: basement samples from IODP Hole 1256D. Geochem Geophys Geosyst 9:Q12O15

    Article  Google Scholar 

  • Scheidegger Y, Baur H, Brennwald MS, Fleitmann D, Wieler R, Kipfer R (2010) Accurate analysis of noble gas concentrations in small water samples and its application to fluid inclusions in stalagmites. Chem Geol 272:31–39

    Article  Google Scholar 

  • Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379

    Article  Google Scholar 

  • Seyfried WE, Bischoff JL (1981) Experimental seawater–basalt interaction at 300 degrees C, 500 bars, chemical-exchange, secondary mineral formation and implications for the transport of heavy-metals. Geochim Cosmochim Acta 45:135–147

    Article  Google Scholar 

  • Seyfried WE Jr, Seewald JS, Berndt ME, Ding K, Foustoukos DI (2003) Chemistry of hydrothermal vent fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: geochemical controls in the aftermath of June 1999 seismic events. J Geophys Res 108:2429

    Article  Google Scholar 

  • Sharp ZD, Barnes JD (2004) Water-soluble chlorides in massive seafloor serpentinites: a source of chloride in subduction zones. Earth Planet Sci Lett 226:243–254

    Article  Google Scholar 

  • Sharp ZD, Barnes JD, Brearley AJ, Chaussidon M, Fischer TP, Kamenetsky VS (2007) Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature 446:1062–1065

    Article  Google Scholar 

  • Smith SP, Kennedy BM (1983) The solubility of noble gases in water and in NaCl brine. Geochim Cosmochim Acta 47:503–515

    Article  Google Scholar 

  • Stakes D, Vanko DA (1986) Multistage hydrothermal alteration of gabbroic rocks from the failed Mathematician Ridge. Earth Planet Sci Lett 79:75–92

    Article  Google Scholar 

  • Staudacher T, Allègre CJ (1988) Recycling of oceanic crust and sediments: the noble gas subduction barrier. Earth Planet Sci Lett 89:173–183

    Article  Google Scholar 

  • Staudigel H, Hart SR (1983) Alteration of basaltic glass—mechanisms and significance for the oceanic-crust seawater budget. Geochim Cosmochim Acta 47:337–350

    Article  Google Scholar 

  • Stuart FM, Turner G (1998) Mantle-derived Ar-40 in mid-ocean ridge hydrothermal fluids: implications for the source of volatiles and mantle degassing rates. Chem Geol 147:77–88

    Article  Google Scholar 

  • Svensen H, Jamtveit B, Yardley B, Engvik AK, Austrheim H, Broman C (1999) Lead and bromine enrichment in eclogite-facies fluids: extreme fractionation during lower-crustal hydration. Geology 27:467–470

    Article  Google Scholar 

  • Svensen H, Banks DA, Austreim H (2001) Halogen contents of eclogite facies fluid inclusions and minerals: Caledonides, western Norway. J Metamorph Geol 19:165–178

    Article  Google Scholar 

  • Trieloff M, Kunz J, Clague DA, Harrison D, Allegre CJ (2000) The nature of pristine noble gases in mantle plumes. Science 288:1036–1038

    Article  Google Scholar 

  • Vanko DA (1986) High-chlorine amphiboles from oceanic rocks: product of highly-saline hydrothermal fluids? Am Mineral 71:51–59

    Google Scholar 

  • Vanko DA (1988) Temperature, pressure, and composition of hydrothermal fluids, with their bearing on the magnitude of tectonic uplift at mid-ocean ridges, inferred from fluid inclusions in oceanic layer 3 rocks. J Geophys Res Solid Earth 93:4595–4611

    Article  Google Scholar 

  • Vanko DA, Batiza R (1982) Gabbroic rocks from the Mathematician failed rift. Nature 300:742–744

    Article  Google Scholar 

  • Volfinger M, Robert JL, Vielzeuf D, Neiva AMR (1985) Structural control of the chlorine content of OH-bearing silicates (micas and amphiboles). Geochim Cosmochim Acta 49:37–48

    Article  Google Scholar 

  • Von Damm KL, Bischoff JL (1987) Chemistry of hydrothermal solutions from the southern Juan de Fuca Ridge. J Geophys Res Solid Earth 92:11334–11346

    Article  Google Scholar 

  • Von Damm KL, Buttermore LG, Oosting SE, Bray AM, Fornari DJ, Lilley MD, Shanks Iii WC (1997) Direct observation of the evolution of a seafloor ‘black smoker’ from vapor to brine. Earth Planet Sci Lett 149:101–111

    Article  Google Scholar 

  • Von Damm KL, Lilley MD, Shanks Iii WC, Brockington M, Bray AM, O’Grady KM, Olson E, Graham A, Proskurowski G (2003) Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise. Earth Planet Sci Lett 206:365–378

    Article  Google Scholar 

  • Winckler G, Aeschbach-Hertig W, Kipfer R, Botz R, Rubel AP, Bayer R, Stoffers P (2001) Constraints on origin and evolution of Red Sea brines from helium and argon isotopes. Earth Planet Sci Lett 184:671–683

    Article  Google Scholar 

  • Yardley BWD (2005) 100th anniversary special paper: metal concentrations in crustal fluids and their relationship to ore formation. Econ Geol 100:613–632

    Google Scholar 

  • Yokochi R, Marty B (2004) A determination of the neon isotopic composition of the deep mantle. Earth Planet Sci Lett 225:77–88

    Article  Google Scholar 

  • You CF, Butterfield DA, Spivack AJ, Gieskes JM, Gamo T, Campbell AJ (1994) Boron and halide systematics in submarine hydrothermal systems: effects of phase separation and sedimentary contributions. Earth Planet Sci Lett 123:227–238

    Article  Google Scholar 

Download references

Acknowledgments

Dr M.A. Kendrick is the recipient of an Australian Research Council Future Fellowship (project number FT130100141). We gratefully acknowledge Rodey Batiza for recovering these samples as well as the other scientists and crew of the 1981 voyage of the R/V Valero IV. Xiaodong Zhang and Bob Rapp are, respectively, thanked for technical assistance in the ANU noble gas and electron microprobe laboratories. The manuscripts clarity was improved by two anonymous but constructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Kendrick.

Additional information

Communicated by Steven Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kendrick, M.A., Honda, M. & Vanko, D.A. Halogens and noble gases in Mathematician Ridge meta-gabbros, NE Pacific: implications for oceanic hydrothermal root zones and global volatile cycles. Contrib Mineral Petrol 170, 43 (2015). https://doi.org/10.1007/s00410-015-1192-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1192-x

Keywords

Navigation