Skip to main content
Log in

Chemical zonation in olivine-hosted melt inclusions

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Significant zonation in major, minor, trace, and volatile elements has been documented in naturally glassy olivine-hosted melt inclusions from the Siqueiros Fracture Zone and the Galapagos Islands. Components with a higher concentration in the host olivine than in the melt (e.g., MgO, FeO, Cr2O3, and MnO) are depleted at the edges of the zoned melt inclusions relative to their centers, whereas except for CaO, H2O, and F, components with a lower concentration in the host olivine than in the melt (e.g., Al2O3, SiO2, Na2O, K2O, TiO2, S, and Cl) are enriched near the melt inclusion edges. This zonation is due to formation of an olivine-depleted boundary layer in the adjacent melt in response to cooling and crystallization of olivine on the walls of the melt inclusions, concurrent with diffusive propagation of the boundary layer toward the inclusion center. Concentration profiles of some components in the melt inclusions exhibit multicomponent diffusion effects such as uphill diffusion (CaO, FeO) or slowing of the diffusion of typically rapidly diffusing components (Na2O, K2O) by coupling to slow diffusing components such as SiO2 and Al2O3. Concentrations of H2O and F decrease toward the edges of some of the Siqueiros melt inclusions, suggesting either that these components have been lost from the inclusions into the host olivine late in their cooling histories and/or that these components are exhibiting multicomponent diffusion effects. A model has been developed of the time-dependent evolution of MgO concentration profiles in melt inclusions due to simultaneous depletion of MgO at the inclusion walls due to olivine growth and diffusion of MgO in the melt inclusions in response to this depletion. Observed concentration profiles were fit to this model to constrain their thermal histories. Cooling rates determined by a single-stage linear cooling model are 150–13,000 °C h−1 from the liquidus down to ~1,000 °C, consistent with previously determined cooling rates for basaltic glasses; compositional trends with melt inclusion size observed in the Siqueiros melt inclusions are described well by this simple single-stage linear cooling model. Despite the overall success of the modeling of MgO concentration profiles using a single-stage cooling history, MgO concentration profiles in some melt inclusions are better fit by a two-stage cooling history with a slower-cooling first stage followed by a faster-cooling second stage; the inferred total duration of cooling from the liquidus down to ~1,000 °C ranges from 40 s to just over 1 h. Based on our observations and models, compositions of zoned melt inclusions (even if measured at the centers of the inclusions) will typically have been diffusively fractionated relative to the initially trapped melt; for such inclusions, the initial composition cannot be simply reconstructed based on olivine-addition calculations, so caution should be exercised in application of such reconstructions to correct for post-entrapment crystallization of olivine on inclusion walls. Off-center analyses of a melt inclusion can also give results significantly fractionated relative to simple olivine crystallization. All melt inclusions from the Siqueiros and Galapagos sample suites exhibit zoning profiles, and this feature may be nearly universal in glassy, olivine-hosted inclusions. If so, zoning profiles in melt inclusions could be widely useful to constrain late-stage syneruptive processes and as natural diffusion experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Albarede F, Bottinga Y (1972) Kinetic disequilibrium in trace element partitioning between phenocrysts and host lava. Geochim Cosmochim Acta 36(2):141–156. doi:10.1016/0016-7037(72)90003-8

    Article  Google Scholar 

  • Alletti M, Baker DR, Freda C (2007) Halogen diffusion in a basaltic melt. Geochim Cosmochim Acta 71(14):3570–3580

    Article  Google Scholar 

  • Anderson AT (1974) Evidence for a picritic, volatile-rich magma beneath Mt. Shasta, California. J Petrol 15(2):243. doi:10.1093/petrology/15.2.243

    Article  Google Scholar 

  • Armstrong JT (1988) Quantitative analysis of silicate and oxide minerals: comparison of Monte Carlo, ZAF and Φ(ρz) procedures. In: Newbury DE (ed) Microbeam analysis—1988. San Francisco Press, San Francisco, pp 239–246

    Google Scholar 

  • Baker D (1990) Chemical interdiffusion of dacite and rhyolite: anhydrous measurements at 1 atm and 10 kbar, application of transition state theory, and diffusion in zoned magma chambers. Contrib Mineral Petrol 104(4):407–423. doi:10.1007/bf01575619

    Article  Google Scholar 

  • Chen Y, Zhang Y (2008) Olivine dissolution in basaltic melt. Geochim Cosmochim Acta 72(19):4756–4777. doi:10.1016/j.gca.2008.07.014

    Article  Google Scholar 

  • Chen Y, Zhang Y (2009) Clinopyroxene dissolution in basaltic melt. Geochim Cosmochim Acta 73(19):5730–5747

    Article  Google Scholar 

  • Chen Y, Provost A, Schiano P, Cluzel N (2013) Magma ascent rate and initial water concentration inferred from diffusive water loss from olivine-hosted melt inclusions. Contrib Mineral Petrol 165(3):525–541. doi:10.1007/s00410-012-0821-x

    Article  Google Scholar 

  • Colin A, Faure F, Burnard P (2012) Timescales of convection in magma chambers below the Mid-Atlantic ridge from melt inclusions investigations. Contrib Mineral Petrol 164(4):677–691. doi:10.1007/s00410-012-0764-2

    Article  Google Scholar 

  • Cooper AR (1968) The use and limitations of the concept of an effective binary diffusion coefficient for multi-component diffusion. Mass Transp Oxides 296:79–84

    Google Scholar 

  • Costa F, Dungan M (2005) Short time scales of magmatic assimilation from diffusion modeling of multiple elements in olivine. Geology 33(10):837–840. doi:10.1130/g21675.1

    Article  Google Scholar 

  • Cottrell E, Spiegelman M, Langmuir CH (2002) Consequences of diffusive reequilibration for the interpretation of melt inclusions. Geochem Geophys Geosyst 3. doi:10.1029/2001gc000205

  • Danyushevsky LV, Della-Pasqua FN, Sokolov S (2000) Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contrib Mineral Petrol 138(1):68–83. doi:10.1007/pl00007664

    Article  Google Scholar 

  • Danyushevsky LV, McNeill AW, Sobolev AV (2002a) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183(1–4):5–24. doi:10.1016/s0009-2541(01)00369-2

    Article  Google Scholar 

  • Danyushevsky LV, Sokolov S, Falloon TJ (2002b) Melt inclusions in olivine phenocrysts: using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks. J Petrol 43(9):1651–1671. doi:10.1093/petrology/43.9.1651

    Article  Google Scholar 

  • Danyushevsky LV, Perfit MR, Eggins SM, Falloon TJ (2003) Crustal origin for coupled ‘ultra-depleted’ and ‘plagioclase’ signatures in MORB olivine-hosted melt inclusions: evidence from the Siqueiros Transform Fault, East Pacific Rise. Contrib Mineral Petrol 144(5):619–637

    Article  Google Scholar 

  • Danyushevsky LV, Leslie RAJ, Crawford AJ, Durance P (2004) Melt inclusions in primitive olivine phenocrysts: the role of localized reaction processes in the origin of anomalous compositions. J Petrol 45(12):2531–2553

    Article  Google Scholar 

  • Efron B, Tibshirani R (1985) The bootstrap method for assessing statistical accuracy. DTIC document

  • Faure F, Schiano P (2005) Experimental investigation of equilibration conditions during forsterite growth and melt inclusion formation. Earth Planet Sci Lett 236(3–4):882–898. doi:10.1016/j.epsl.2005.04.050

    Article  Google Scholar 

  • Gaetani GA, Watson EB (2002) Modeling the major-element evolution of olivine-hosted melt inclusions. Chem Geol 183(1–4):25–41. doi:10.1016/s0009-2541(01)00370-9

    Article  Google Scholar 

  • Gaetani GA, O’Leary JA, Shimizu N, Bucholz CE, Newville M (2012) Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology 40(10):915–918

    Article  Google Scholar 

  • Geist DJ, Fornari DJ, Kurz MD, Harpp KS, Adam Soule S, Perfit MR, Koleszar AM (2006) Submarine Fernandina: magmatism at the leading edge of the Galápagos hot spot. Geochem Geophys Geosyst 7(12):n/a–n/a. doi:10.1029/2006gc001290

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119(2):197–212

    Article  Google Scholar 

  • Hauri E (2002) SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions. Chem Geol 183(1–4):115–141. doi:10.1016/S0009-2541(01)00374-6

    Article  Google Scholar 

  • Hauri E, Wang J, Dixon JE, King PL, Mandeville C, Newman S (2002) SIMS analysis of volatiles in silicate glasses: 1. Calibration, matrix effects and comparisons with FTIR. Chem Geol 183(1–4):99–114. doi:10.1016/S0009-2541(01)00375-8

    Article  Google Scholar 

  • Jambon A (1982) Tracer diffusion in granitic melts: experimental results for Na, K, Rb, Cs, Ca, Sr, Ba, Ce, Eu to 1300 C and a model of calculation. J Geophys Res: Solid Earth (1978–2012) 87(B13):10797–10810

    Article  Google Scholar 

  • Koleszar AM, Saal AE, Hauri EH, Nagle AN, Liang Y, Kurz MD (2009) The volatile contents of the Galapagos plume; evidence for H2O and F open system behavior in melt inclusions. Earth Planet Sci Lett 287(3–4):442–452. doi:10.1016/j.epsl.2009.08.029

    Article  Google Scholar 

  • Kress VC, Ghiorso MS (1995) Multicomponent diffusion in basaltic melts. Geochim Cosmochim Acta 59(2):313–324. doi:10.1016/0016-7037(94)00286-u

    Article  Google Scholar 

  • Lagarias J, Reeds J, Wright M, Wright P (1998) Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optim 9(1):112–147. doi:10.1137/S1052623496303470

    Article  Google Scholar 

  • Lasaga AC (1979) Multicomponent exchange and diffusion in silicates. Geochim Cosmochim Acta 43(4):455–469. doi:10.1016/0016-7037(79)90158-3

    Article  Google Scholar 

  • LaTourrette T, Wasserburg GJ, Fahey AJ (1996) Self diffusion of Mg, Ca, Ba, Nd, Yb, Ti, Zr, and U in haplobasaltic melt. Geochim Cosmochim Acta 60(8):1329–1340. doi:10.1016/0016-7037(96)00015-4

    Article  Google Scholar 

  • Le Voyer M, Asimow PD, Mosenfelder JL, Guan Y, Wallace PJ, Schiano P, Stolper EM, Eiler JM (2014) Zonation of H2O and F concentrations around melt inclusions in olivines. J Petrol. doi:10.1093/petrology/egu003

    Google Scholar 

  • Lesher C, Hervig R, Tinker D (1996) Self diffusion of network formers (silicon and oxygen) in naturally occurring basaltic liquid. Geochim Cosmochim Acta 60(3):405–413

    Article  Google Scholar 

  • Liang Y (2010) Multicomponent diffusion in molten silicates: theory, experiments, and geological applications. Rev Mineral Geochem 72(1):409–446

    Article  Google Scholar 

  • Lloyd AS, Plank T, Ruprecht P, Hauri EH, Rose W (2013) Volatile loss from melt inclusions in pyroclasts of differing sizes. Contrib Mineral Petrol 165(1):1–25

    Article  Google Scholar 

  • Long GL, Winefordner JD (1983) Limit of detection a closer look at the IUPAC definition. Anal Chem 55(7):712A–724A. doi:10.1021/ac00258a724

    Google Scholar 

  • Lundstrom CC (2000) Rapid diffusive infiltration of sodium into partially molten peridotite. Nature 403(6769):527–530

    Article  Google Scholar 

  • Lundstrom C (2003) An experimental investigation of the diffusive infiltration of alkalis into partially molten peridotite: implications for mantle melting processes. Geochem Geophys Geosyst 4(9):8614. doi:10.1029/2001GC000224

    Article  Google Scholar 

  • Maclennan J, McKenzie D, Grönvold K, Shimizu N, Eiler J, Kitchen N (2003) Melt mixing and crystallization under Theistareykir, northeast Iceland. Geochem Geophys Geosyst 4(11):8624. doi:10.1029/2003GC000558

    Article  Google Scholar 

  • Massare D, Métrich N, Clocchiatti R (2002) High-temperature experiments on silicate melt inclusions in olivine at 1 atm: inference on temperatures of homogenization and H2O concentrations. Chem Geol 183(1):87–98

    Article  Google Scholar 

  • Matzen AK, Baker MB, Beckett JR, Stolper EM (2011) Fe–Mg partitioning between olivine and high-magnesian melts and the nature of Hawaiian parental liquids. J Petrol 52(7–8):1243–1263

    Article  Google Scholar 

  • Maury RC, Bizouard H (1974) Melting of acid xenoliths into a basanite: an approach to the possible mechanisms of crustal contamination. Contrib Mineral Petrol 48(4):275–286. doi:10.1007/bf00951335

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3–4):223–253. doi:10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • Mercier M (2009) Abondance et signification de l’eau dans les magmas mafiques. Développement de la spectroscopie vibrationnelle (Raman et FTIR). Thesis, Université Paris Sud-Paris XI

  • Morgan DJ, Blake S, Rogers NW, DeVivo B, Rolandi G, Macdonald R, Hawkesworth CJ (2004) Time scales of crystal residence and magma chamber volume from modelling of diffusion profiles in phenocrysts: vesuvius 1944. Earth Planet Sci Lett 222(3–4):933–946. doi:10.1016/j.epsl.2004.03.030

    Article  Google Scholar 

  • Mosenfelder JL, Le Voyer M, Rossman GR, Guan Y, Bell DR, Asimow PD, Eiler JM (2011) Analysis of hydrogen in olivine by SIMS: evaluation of standards and protocol. Am Mineral 96(11–12):1725–1741. doi:10.2138/am.2011.3810

    Article  Google Scholar 

  • Mungall JE, Romano C, Dingwell DB (1998) Multicomponent diffusion in the molten system K2O–Na2O–Al2O3–SiO2–H2O. Am Mineral 83(7–8):685–699

    Google Scholar 

  • Nichols ARL, Potuzak M, Dingwell DB (2009) Cooling rates of basaltic hyaloclastites and pillow lava glasses from the HSDP2 drill core. Geochim Cosmochim Acta 73(4):1052–1066. doi:10.1016/j.gca.2008.11.023

    Article  Google Scholar 

  • Perfit MR, Fornari DJ, Ridley WI, Kirk PD, Casey J, Kastens KA, Reynolds JR, Edwards M, Desonie D, Shuster R, Paradis S (1996) Recent volcanism in the Siqueiros transform fault: picritic basalts and implications for MORB magma genesis. Earth Planet Sci Lett 141(1–4):91–108. doi:10.1016/0012-821x(96)00052-0

    Article  Google Scholar 

  • Portnyagin M, Almeev R, Matveev S, Holtz F (2008) Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma. Earth Planet Sci Lett 272(3):541–552

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69(1):61–120

    Article  Google Scholar 

  • Qin ZW, Lu FQ, Anderson AT (1992) Diffusive reequilibration of melt and fluid inclusions. Am Mineral 77(5–6):565–576

    Google Scholar 

  • Richter FM, Davis AM, DePaolo DJ, Watson EB (2003) Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim Cosmochim Acta 67(20):3905–3923. doi:10.1016/S0016-7037(03)00174-1

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions, vol 12. Reviews in mineralogy. Mineralogical Society of America, USA

    Google Scholar 

  • Roeder P, Emslie R (1970) Olivine–liquid equilibrium. Contrib Mineral Petrol 29(4):275–289

    Article  Google Scholar 

  • Ryerson FJ, Hess PC (1978) Implications of liquid–liquid distribution coefficients to mineral–liquid partitioning. Geochim Cosmochim Acta 42(6):921–932. doi:10.1016/0016-7037(78)90103-5

    Article  Google Scholar 

  • Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419(6906):451–455. http://www.nature.com/nature/journal/v419/n6906/suppinfo/nature01073_S1.html

  • Saal AE, Kurz MD, Hart SR, Blusztajn JS, Blichert-Toft J, Liang Y, Geist DJ (2007) The role of lithospheric gabbros on the composition of Galapagos lavas. Earth Planet Sci Lett 257(3–4):391–406. doi:10.1016/j.epsl.2007.02.040

    Article  Google Scholar 

  • Sato H (1975) Diffusion coronas around quartz xenocrysts in andesite and basalt from Tertiary volcanic region in northeastern Shikoku, Japan. Contrib Mineral Petrol 50(1):49–64. doi:10.1007/bf00385221

    Article  Google Scholar 

  • Smith PM, Asimow PD (2005) Adiabat_1ph: a new public front-end to the MELTS, pMELTS, and pHMELTS models. Geochem Geophys Geosyst 6(2):Q02004

    Article  Google Scholar 

  • Smith V, Tiller W, Rutter J (1955) A mathematical analysis of solute redistribution during solidification. Can J Phys 33(12):723–745

    Article  Google Scholar 

  • Stolper E (1982) Water in silicate glasses: an infrared spectroscopic study. Contrib Mineral Petrol 81(1):1–17. doi:10.1007/bf00371154

    Article  Google Scholar 

  • Sugawara T (2000) Empirical relationships between temperature, pressure, and MgO content in olivine and pyroxene saturated liquid. J Geophys Res 105(B4):8457–8472

    Article  Google Scholar 

  • Taylor M, Brown GE (1979) Structure of mineral glasses—I. The feldspar glasses NaAlSi3O8, KAlSi3O8, CaAl2Si2O8. Geochim Cosmochim Acta 43(1):61–75

    Article  Google Scholar 

  • Tiller WA, Jackson KA, Rutter JW, Chalmers B (1953) The redistribution of solute atoms during the solidification of metals. Acta Metall 1(4):428–437. doi:10.1016/0001-6160(53)90126-6

    Article  Google Scholar 

  • Trial AF, Spera FJ (1994) Measuring the multicomponent diffusion matrix: experimental design and data analysis for silicate melts. Geochim Cosmochim Acta 58(18):3769–3783. doi:10.1016/0016-7037(94)90362-x

    Article  Google Scholar 

  • Watson EB (1982) Basalt contamination by continental crust: some experiments and models. Contrib Mineral Petrol 80(1):73–87. doi:10.1007/bf00376736

    Article  Google Scholar 

  • Watson EB, Jurewicz SR (1984) Behavior of alkalies during diffusive interaction of granitic xenoliths with basaltic magma. J Geol 92(2):121–131

    Article  Google Scholar 

  • White WM, McBirney AR, Duncan RA (1993) Petrology and geochemistry of the Galápagos Islands: portrait of a pathological mantle plume. J Geophys Res 98(B11):19533–19563. doi:10.1029/93JB02018

    Article  Google Scholar 

  • Wilding M, Dingwell D, Batiza R, Wilson L (2000) Cooling rates of hyaloclastites: applications of relaxation geospeedometry to undersea volcanic deposits. Bull Volcanol 61(8):527–536. doi:10.1007/s004450050003

    Article  Google Scholar 

  • Xu Z, Zhang Y (2002) Quench rates in air, water, and liquid nitrogen, and inference of temperature in volcanic eruption columns. Earth Planet Sci Lett 200(3):315–330

    Article  Google Scholar 

  • Zhang Y (1993) A modified effective binary diffusion model. J Geophys Res: Solid Earth (1978–2012) 98(B7):11901–11920

    Article  Google Scholar 

  • Zhang Y (2008) Geochemical kinetics. Princeton University Press, Princeton

    Google Scholar 

  • Zhang Y (2010) Diffusion in minerals and melts: theoretical background. Rev Mineral Geochem 72(1):5–59

    Article  Google Scholar 

  • Zhang Y, Stolper EM (1991) Water diffusion in a basaltic melt. Nature 351(6324):306–309

    Article  Google Scholar 

  • Zhang Y, Walker D, Lesher CE (1989) Diffusive crystal dissolution. Contrib Mineral Petrol 102(4):492–513. doi:10.1007/bf00371090

    Article  Google Scholar 

  • Zhang Y, Stolper EM, Ihinger P (1995) Kinetics of the reaction H2O + O=2OH in rhyolitic and albitic glasses: preliminary results. Am Mineral 80:593–612

    Google Scholar 

  • Zhang Y, Jenkins J, Xu Z (1997) Kinetics of the reaction H2O + O→2OH in rhyolitic glasses upon cooling: geospeedometry and comparison with glass transition. Geochim Cosmochim Acta 61(11):2167–2173

    Article  Google Scholar 

  • Zhang Y, Xu Z, Behrens H (2000) Hydrous species geospeedometer in rhyolite: improved calibration and application. Geochim Cosmochim Acta 64(19):3347–3355

    Article  Google Scholar 

  • Zhang Y, Ni H, Chen Y (2010) Diffusion data in silicate melts. Rev Mineral Geochem 72(1):311–408

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Nicole Métrich and Leonid Danyushevsky for their thoughtful reviews, and Jon Blundy for editorial handling of the manuscript. We are grateful to Mike Baker for many encouraging and insightful discussions, and for informal review of the manuscript. We are also grateful for useful discussions with Paul Asimow, Keith Putirka (who shared a large quantity of olivine-melt equilibrium data with us), John Maclennan, Terry Plank, and Madeleine Humphreys. This work was funded by US National Science Foundation Grants EAR-0739091 (EMS), EAR-1019440 (YZ), and OCE-0962195 (AES), and by a NASA Earth and Space Sciences Fellowship to Megan Newcombe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Newcombe.

Additional information

Communicated by Jon Blundy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2014_1030_MOESM1_ESM.pdf

Online Resource 1: File ESM1.pdf contains further description of the model, an error analysis, model inversion tests, a comparison of the single-stage and two-stage cooling models, conductive cooling calculations, a table of sample names/locations, a table summarizing the results of fitting MgO concentration profiles in Siqueiros and Galapagos melt inclusions to both single-stage and two-stage linear thermal histories, and 17 additional figures. The MATLAB code used to constrain thermal histories of chemically zoned melt inclusions is available from the first author on request (PDF 3912 KB)

410_2014_1030_MOESM2_ESM.xls

Online Resource 2: File ESM2.xls contains supplementary electron microprobe data and backscattered electron images of all of the melt inclusions used in this study (XLS 3998 KB)

410_2014_1030_MOESM3_ESM.pdf

Online Resource 3: File ESM3.pdf contains further discussion of our nanoSIMS data, including a table of compositions of glass standards, two sets of calibration curves, and concentration profiles of H2O, S, Cl, and F in melt inclusions Siq16 and Siq7 (PDF 787 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newcombe, M.E., Fabbrizio, A., Zhang, Y. et al. Chemical zonation in olivine-hosted melt inclusions. Contrib Mineral Petrol 168, 1030 (2014). https://doi.org/10.1007/s00410-014-1030-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-1030-6

Keywords

Navigation